K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2015

\(x:y:z=3:5;\left(-2\right)\text{ hay }\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

\(\text{áp dụng tính chất của dãy tỉ số bằng nhau ta có:}\)

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{5.3-5+3.\left(-2\right)}=\frac{-16}{4}=-4\)

\(\text{Suy ra : }\frac{x}{3}=-4\Rightarrow x=-4.3=-12\)

\(\frac{y}{5}=-4\Rightarrow y=-4.5=-20\)

\(\frac{z}{-2}=-4\Rightarrow z=\left(-4\right)\left(-2\right)=8\)

24 tháng 12 2020

theo đề bài,ta có:

x/3 = y/5 = -z/2 và 5x - y + 3z = -16

Áp dụng tính chất bằng nhau của dãy tỉ số, ta có :

x/3 = y/5 = -z/2 = (5x - y + 3z) / (5.3 - 5 + 3.2) = -16 / 16 = -1

Suy ra:

x/3 = -1 => x = -1.3 = -3

y/5 = -1 => y = -1.5 = -5

-z/2 = -1 => -z = -1.2 = -2 => z = 2

Vậy x = -3 ; y = -5 ; z = 2

15 tháng 11 2015

bài 2 :

ta có x:y:z=3:5:(-2)

=>x/3=y/5=z/-2

=>5x/15=y/5=3z/-6

áp dụng tc dãy ... ta có :

5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4

=>x/3=-=>x=-12

=>y/5=-4=>y=-20

=>z/-2=-4=>z=8

11 tháng 9 2018

C1: Ta có \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{15-5-6}=\frac{-16}{4}=-4\)\(\Rightarrow\hept{\begin{cases}x=-12\\y=-20\\z=8\end{cases}}\)
C2: Ta có \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)\(\Rightarrow\hept{\begin{cases}y=\frac{5}{3}x\\z=\frac{-2}{3}x\end{cases}}\Rightarrow5x-y+3z=5x-\frac{5}{3}x-2x=-16\Rightarrow x=-12\)\(\Rightarrow\hept{\begin{cases}y=-20\\z=8\end{cases}}\)

27 tháng 8 2019

C1:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3}{15-5-6}=\frac{-16}{4}-4\left\{y=-20\right\}z=80\)

C2:

\(=\hept{\begin{cases}y=\frac{5}{3}x\\z=\frac{-2}{3}\Rightarrow5x-y-3=5x-\frac{5}{3}x-2x=-16\Rightarrow=-12\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y=-20\\z=8\end{cases}}\)

\(\dfrac{x}{y}=\dfrac{2}{5}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}\)

\(\dfrac{y}{z}=\dfrac{5}{3}\rightarrow\dfrac{y}{5}=\dfrac{z}{3}\)

Ta có: \(\dfrac{x}{2}=\dfrac{y}{5},\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{2x}{4}=\dfrac{y}{5}=\dfrac{3z}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`(2x)/4=y/5=(3z)/9=(2x-y+3z)/(4-5+9)=16/8=2`

`-> x/2=y/5=z/3=2`

`-> x=2*2=4, y=2*5=10, z=2*3=6`

 

`x/5=y/3 -> x/25=y/15`

`y/5=z/4 -> y/15=z/12`

`x/25=y/15, y/15=z/12`

`-> x/25=y/15=z/12`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/25=y/15=z/12=(x-y+z)/(25-15+12)=22/22=1`

`-> x/25=y/15=z/12=1`

`-> x=25, y=15, z=12`

 

a: x/y=2/5

=>x/2=y/5

y/z=5/3

=>y/5=z/3

=>x/2=y/5=z/3

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{2x-y+3z}{2\cdot2-5+3\cdot3}=\dfrac{16}{8}=2\)

=>x=4; y=10; z=6

b: x/5=y/3

=>x/25=y/15

y/5=z/4

=>y/15=z/12

=>x/25=y/15=z/12

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{25}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{25-15+12}=1\)

=>x=25; y=15; z=12

1 tháng 9 2015

Theo đề, ta có

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) và 5x-y+3z= 124

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\left(=\right)\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)

=>  \(\frac{x}{3}=31\)

\(\frac{y}{5}=31\)

\(\frac{z}{-2}=31\)

=>  x = 93

y  = 155

z = -62

17 tháng 7 2021

\(\frac{x}{3}\)\(=\)\(\frac{y}{5}\)\(=\)\(\frac{z}{-2}\) và  \(5x-y+3z=124\)

\(\frac{x}{3}\)\(=\)\(\frac{y}{5}\)\(=\)\(\frac{z}{-2}\)\(\left(=\right)\)\(\frac{5x}{15}\)\(=\)\(\frac{y}{5}\)\(=\)\(\frac{3z}{-6}\)\(=\)\(\frac{5x-y-3x}{15-5-\left(-6\right)}\)\(=\)\(\frac{124}{4}\)\(=\)\(31\)

\(\frac{x}{3}\)\(=\)\(31\)

\(\frac{y}{5}\)\(=\)\(31\)

\(\frac{x}{-2}\)\(=\)\(31\)

\(x=93\)

\(y=155\)

\(x=-62\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{-2}=\dfrac{5x-y+3z}{5\cdot3-4+3\cdot\left(-2\right)}=\dfrac{-16}{5}\)

Do đó: \(\left\{{}\begin{matrix}x=\dfrac{-48}{5}\\y=\dfrac{-64}{5}\\z=\dfrac{32}{5}\end{matrix}\right.\)