Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x-2}{6}=\frac{y+3}{9}=\frac{z-7}{10}=k\Rightarrow\hept{\begin{cases}x=6k+2\\y=9k-3\\z=10k+7\end{cases}}\)
Theo đề bài: x+y+z=106
<=>\(6k+2+9k-3+10k+7=106\)
<=>\(25k+6=106\)
<=> 25k = 100
<=> k = 4
=> \(\hept{\begin{cases}x=6.4+2=26\\y=9.4-3=33\\z=10.4+7=47\end{cases}}\)
Vậy .........................
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
ta có : \(\frac{x}{y}=\frac{6}{9}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{9}\)\(=\frac{x-y}{6-9}\)\(=\frac{30}{-3}\)= \(-10\)
\(\frac{x}{6}=-10\Rightarrow x=-60\)
\(\frac{y}{9}=-10\Rightarrow y=-90\)
b) \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{x}{5}=\frac{2y}{8}=\frac{z}{7}=\frac{x+2y+z}{5+8+7}=\frac{40}{20}=2\)
\(\frac{x}{5}=2\Rightarrow x=10\)
\(\frac{y}{4}=2\Rightarrow y=8\)
\(\frac{z}{7}=2\Rightarrow z=14\)
C) ta có \(\frac{x}{3}=\frac{y}{4}\)
\(\Rightarrow\frac{x}{3}.\frac{1}{7}=\frac{y}{4}.\frac{1}{7}\)
\(\frac{x}{21}=\frac{y}{28}\)
ta lại có \(\frac{z}{5}=\frac{y}{7}\)
\(\Rightarrow\frac{z}{5}.\frac{1}{4}=\frac{y}{7}.\frac{1}{4}\)
\(\frac{z}{20}=\frac{y}{28}\)
\(\Rightarrow\frac{z}{20}=\frac{y}{28}=\frac{x}{21}\)\(=\frac{2x}{42}=\frac{3y}{84}=\frac{z}{20}=\frac{2x+3y-z}{42+84-20}=\frac{106}{106}=1\)
\(\frac{x}{21}=1\Rightarrow x=21\)
\(\frac{y}{28}=1\Rightarrow y=28\)
\(\frac{z}{20}=1\Rightarrow z=20\)
chúc bn hc tốt ^-^
a/ Ta có :
\(\frac{x}{y}=-\frac{6}{9}=-\frac{2}{3}\)
\(\Leftrightarrow\frac{x}{-2}=\frac{y}{3}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-2}=\frac{y}{3}=\frac{x-y}{-2-3}=\frac{30}{-5}=-6\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{-2}=-6\\\frac{y}{3}=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=-18\end{matrix}\right.\)
Vậy.....
b/ Ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{40}{20}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{5}=2\\\frac{y}{4}=2\\\frac{z}{7}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=8\\z=14\end{matrix}\right.\)
Vậy....
c/ Ta có :
+) \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{21}=\frac{y}{28}\left(1\right)\)
+) \(\frac{y}{7}=\frac{z}{5}\Leftrightarrow\frac{y}{28}=\frac{z}{20}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\frac{x}{21}=\frac{y}{28}=\frac{z}{20}=\frac{2x}{42}=\frac{3y}{84}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{21}=\frac{y}{28}=\frac{z}{20}=\frac{2x}{42}=\frac{3y}{84}=\frac{2x+3y-z}{42+84-20}=\frac{106}{106}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{21}=1\\\frac{y}{28}=1\\\frac{z}{20}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=21\\y=28\\z=20\end{matrix}\right.\)
Vậy...
Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}.\frac{1}{7}=\frac{y}{4}.\frac{1}{7}\Leftrightarrow\frac{x}{21}=\frac{y}{28}\)
\(\frac{z}{5}=\frac{y}{7}\Rightarrow\frac{z}{20}=\frac{y}{24}\)
Theo t/c dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{21}=\frac{y}{28}=\frac{z}{20}=\frac{2x+3y-z}{21.2+28.3-20}=\frac{106}{106}=1\)
\(\Rightarrow x=1.21=21;y=1.28=28;z=1.20=20\)
\(\frac{x}{3}=\frac{y}{4};\)\(\frac{z}{5}=\frac{y}{7}\)
suy ra: \(\frac{x}{21}=\frac{y}{28}=\frac{z}{20}\)
hay \(\frac{2x}{42}=\frac{3y}{84}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2x}{42}=\frac{3y}{84}=\frac{z}{20}=\frac{2x+3y-z}{42+84-20}=1\)
suy ra: \(\frac{2x}{42}=1\)\(\Rightarrow\)\(x=21\)
\(\frac{3y}{84}=1\) \(\Rightarrow\)\(y=28\)
\(\frac{z}{20}=1\)\(\Rightarrow\)\(z=20\)
Bài 4 :
a) Ta có : \(\frac{x}{y}=\frac{-6}{9}\)=> \(\frac{x}{-6}=\frac{y}{9}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{-6}=\frac{y}{9}=\frac{x-y}{-6-9}=\frac{30}{-15}=-2\)
=> x = 12,y = -18
b) Ta có : \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}\)
=> \(\frac{x}{5}=\frac{2y}{8}=\frac{z}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{2y}{8}=\frac{z}{7}=\frac{x+2y+z}{5+8+7}=\frac{40}{20}=2\)
=> x = 10,y = 8 , z = 14
c) Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{28}\)
\(\frac{z}{5}=\frac{y}{7}\Rightarrow\frac{z}{20}=\frac{y}{28}\)
=> \(\frac{x}{15}=\frac{y}{28}=\frac{z}{20}\)
=> \(\frac{2x}{30}=\frac{3y}{84}=\frac{z}{20}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{2x}{30}=\frac{3y}{84}=\frac{z}{20}=\frac{2x+3y-z}{30+84-20}=\frac{106}{94}=\frac{53}{47}\)
Tới đây làm nốt nhé
a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:
x/4 =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2
=> x=2.4=8
y=2.3=6
z=2.9=18
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)
ADTCCDTSBN, ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow x=2.4=8\)
\(y=2.3=6\)
\(z=2.9=18\)
b) Đề có nhầm lẫn j k nhỉ =.=
c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)
ADTCCDTSBN, ta có:
\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)
\(\Rightarrow x=-40:5=-8\)
\(y=-40:8=-5\)
\(z=-40:20=-2\)
Tính chất dãy tỉ số bằng nhau, tính bình thường:
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{x-2}{6}=\frac{y+3}{9}=\frac{z-7}{10}=\frac{x-2+y+3+z-7}{6+9+10}=\frac{100}{25}=4\)
\(\Leftrightarrow\hept{\begin{cases}x-2=24\\y+3=36\\z-7=40\end{cases}\Leftrightarrow\hept{\begin{cases}x=26\\y=33\\z=47\end{cases}}}\)
Vậy............