K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(x^2\ge0\forall x\)

\(\left(y-\dfrac{1}{10}\right)^4\ge0\forall y\)

Do đó: \(x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\left(x,y\right)=\left(0;\dfrac{1}{10}\right)\)

2 tháng 9 2020

Ta có : \(x+y=2< =>\left(x+y\right)^2=4< =>\left(\frac{x+y}{2}\right)^2=1\)

Bài toán quy về chứng minh \(xy\le\left(\frac{x+y}{2}\right)^2\)

\(< =>xy\le\frac{\left(x+y\right)^2}{4}< =>4xy\le x^2+y^2+2xy\)

\(< =>4xy-2xy\le x^2+y^2< =>\left(x-y\right)^2\ge0\)*đúng*

Vậy ta có điều phải chứng minh

a) 2x+1.3y=123

<=>2x+1.3y=(22)3.33

<=> 2x+1=2 và 3y=33

<=>x+1=6 và y=3

<=>x=5 và y=3

b) 10x : 5y=20y

<=>10x=20y.5y=100y=(102)y

<=>x=2y (Nhiều số lắm chèn)

c) 2x=4y-1 

<=>2x=2y-2

<=>x=y-2

Mặt khác: 27y=3x+8

<=> 33y=3x+8

<=>3y=x+8

<=>3y=(y-2)+8

<=>2y=6

<=>y=3

=>x=y-2=3-2=1

2 tháng 7 2021

câu a) là 12mà bạn 

16 tháng 1 2020

\(\text{a)}\)\(2^{x+1}.3^y=2^{2x}.3^x\Leftrightarrow\frac{2^{2x}}{2^{x+1}}=\frac{3^y}{3^x}\)

                                          \(\Leftrightarrow2^{x-1}=3^{y-x}\)

                                           \(\Leftrightarrow x-1=y-x=0\)

                                           \(\Leftrightarrow x=y=1\)

                                          

24 tháng 10 2021

a, Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=5\Rightarrow x=10\\\frac{y}{3}=5\Rightarrow y=10\end{cases}}\)

Vậy x = 10, y = 10 

b, Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{7}=\frac{y}{8}=\frac{2x+3y}{2.7+3.8}=\frac{4}{60}=\frac{1}{12}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=\frac{1}{12}\Rightarrow x=\frac{7}{12}\\\frac{y}{8}=\frac{1}{12}\Rightarrow y=\frac{2}{3}\end{cases}}\)

Vậy ... 

24 tháng 10 2021

\(c,3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{4}=\frac{y}{3}=\frac{x-y}{4-3}=\frac{1}{1}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=1\Rightarrow x=4\\\frac{y}{3}=1\Rightarrow y=3\end{cases}}\)

Vậy ....

d,Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{x-y}{3-4}=\frac{48}{\left(-1\right)}=\left(-48\right)\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\left(-48\right)\Rightarrow x=-144\\\frac{y}{4}=\left(-48\right)\Rightarrow y=-192\end{cases}}\)

Vậy ...