K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2021

\(\left(x+y\right)\left(x-y\right)=7\)

Vì \(x+y+x-y=2x\) chẵn 

⇒ \(\left[{}\begin{matrix}x+y\text{⋮}2\\x-y\text{⋮}2\end{matrix}\right.\)

⇒ \(\left(x+y\right)\left(x-y\right)\text{⋮}4\)

mà 7 không chia hết cho 4

⇒ Không tồn tại x,y

a) Vì 7 = 1.7 mà x+y > x-y

=> x+y = 7 và x-y = 1

Bạn đưa về bài toán tổng hiệu nhé!

b) x2 + y + x + xy = 11

     x2 + xy + y + x = 11

    x(x+y) + (y + x) = 11

    (x + y) . ( x+1) = 11

Vì 11 = 1.11

=> x+y = 1 và x+1=11 hoặc x+y=11 và x+1=1

+) Với x+1 = 11 => x=10

Mà x+y = 1 => x+y=1 và x+1=11 ( vô lí)

+) Với x+1 = 1 => x=0

Mà x+y=11 => y= 11-0=11 ( thỏa mãn)

Vậy x=0 và y=11

      

 

11 tháng 3 2022

\(2xy-x-y=2\\ \Rightarrow x\left(2y-1\right)-y=2\\ \Rightarrow2x\left(2y-1\right)-2y+1=4+1\\ \Rightarrow2x\left(2y-1\right)-\left(2y-1\right)=5\\ \Rightarrow\left(2x-1\right)\left(2y-1\right)=5\)

Ta có bảng:

2x-1-5-115
2y-1-1-551
x-2013
y0-231

Vậy \(\left(x,y\right)\in\left\{\left(-2;0\right);\left(0;-2\right);\left(1;3\right);\left(3;1\right)\right\}\)

Giải:

a) \(\left(x-4\right).\left(y+1\right)=8\) 

\(\Rightarrow\left(x-4\right)\) và \(\left(y+1\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Ta có bảng giá trị:

x-4-8-4-2-11248
y+1-1-2-4-88421
x-402356812
y-2-3-5-97310

\(\left(x;y\right)\in N\) nên \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)

Vậy \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\) 

b) \(\left(2x+3\right).\left(y-2\right)=15\) 

\(\Rightarrow\left(2x+3\right)\) và \(\left(y-2\right)\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\) 

2x+3-15-5-3-113515
y-2-1-3-5-1515531
x-9-4-3-2-1016
y1-1-3-1317753

Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\) 

Vậy \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\) 

c) \(xy+2x+y=12\) 

\(\Rightarrow x.\left(y+2\right)+\left(y+2\right)=14\) 

\(\Rightarrow\left(x+1\right).\left(y+2\right)=14\) 

\(\Rightarrow\left(x+1\right)\) và \(\left(y+2\right)\inƯ\left(14\right)=\left\{1;2;7;14\right\}\) 

x+112714
y+214721
x01613
y1250-1

Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\) 

Vậy \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\) 

d) \(xy-x-3y=4\) 

\(\Rightarrow y.\left(x-3\right)-\left(x-3\right)=7\) 

\(\Rightarrow\left(y-1\right).\left(x-3\right)=7\) 

\(\Rightarrow\left(y-1\right)\) và \(\left(x-3\right)\inƯ\left(7\right)=\left\{1;7\right\}\) 

Ta có bảng giá trị:

x-317
y-171
x410
y82

Vậy \(\left(x;y\right)\in\left\{\left(4;8\right);\left(10;2\right)\right\}\)