Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(A=-2x^2+3x-5\)
\(=-2\left(x^2+\frac{3x}{2}-\frac{5}{2}\right)\)
\(=-2\left(x^2-\frac{3x}{2}+\frac{9}{16}\right)-\frac{31}{8}\)
\(=-2\left(x-\frac{3}{4}\right)^2-\frac{31}{8}\le-\frac{31}{8}\)
Dấu = khi \(-2\left(x-\frac{3}{4}\right)^2=0\Leftrightarrow x-\frac{3}{4}=0\Leftrightarrow x=\frac{3}{4}\)
Vậy \(Max_A=-\frac{31}{8}\Leftrightarrow x=\frac{3}{4}\)
Quy đồng thì phần mẫu số là bình phương của số hữu tỉ rồi.
Còn phần tử biến đổi như sau:
\(\left(x-y\right)^2\left(y-z\right)^2+...=\left[\left(x-y\right)\left(y-z\right)+...\right]^2\)
Đây vẫn là bình phương của số hữu tỉ. Xong!
a) Ta có:
M = 3x(x - 5y) + (y - 5x)(-3y) - 3(x2 - y2) - 1
M = 3x2 - 15xy - 3y2 + 15xy - 3x2 + 3y2 - 1
M = (3x2 - 3x2) - (15xy - 15xy) - (3y2 - 3y2) - 1
M = -1
=> Biểu thức M có giá trị ko phụ thuộc vào biến x,y
b) Ta có: S = 1 + x + x2 + x3 + x4 + x5
x.S = x(1 + x + x2 + x3 + x4 + x5)
x.S = x + x2 + x3 + x4 + x5 + x6
xS - S = (x + x2 + x3 + x4 + x5 + x6) - (1 + x + x2 + x3 + x4 + x5)
xS - S = x6 - 1 => đpcm
a) M = 3x(x - 5y) + (y - 5x)(-3y) - 3(x2 - y2) - 1
M = 3x.x + 3x.(-5y) + y.(-3y) + (-5x).(-3y) + (-3).x2 + (-3).x2 + (-3).(-y2) - 1
M = 3x2 - 15xy - 3y2 + 15xy - 3x2 + 3y2 - 1
M = (3x2 - 3x2) + (-15xy + 15xy) + (-3y2 + 3y2) - 1
M = 0 + 0 - 1
M = -1
Vậy: biểu thức không phụ thuộc vào x và y
x(y - 2) + 2y = 8
=> x(y - 2) + 2(y - 2) = 4
=> (x + 2)(y - 2) = 4 = 1 . 4 = 4 . 1 = 2 . 2
Lập bảng :
-4
-1
-3
1
Vậy ...