Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{10}{7}< \frac{14}{7}=2\Rightarrow x< 2\)
Mà \(x\in N\)
TH1 : \(x=0;\)ta có :
\(\frac{1}{y+\frac{1}{z}}=\frac{10}{7}\)
\(\Rightarrow y+\frac{1}{z}=\frac{7}{10}\)
Mà \(\frac{7}{10}< 1\)
\(\Rightarrow y< 1\)
Mà \(y\in N\)
\(\Rightarrow y=0\)
\(\Rightarrow\frac{1}{z}=\frac{7}{10}\)
\(\Rightarrow z=\frac{10}{7}\)
Mà \(\frac{10}{7}\notin N\)
Do đó loại trường hợp này.
TH2 : \(x=1;\)ta có :
\(1+\frac{1}{y+\frac{1}{z}}=\frac{10}{7}\)
\(\Rightarrow\frac{1}{y+\frac{1}{z}}=\frac{10}{7}-1\)
\(\Rightarrow\frac{1}{y+\frac{1}{z}}=\frac{3}{7}\)
\(\Rightarrow y+\frac{1}{z}=\frac{3}{7}\)
Mà \(\frac{3}{7}< 1\)
\(\Rightarrow y< 1\)
Mà \(y\in N\)
\(\Rightarrow y=0\)
\(\Rightarrow\frac{1}{z}=\frac{3}{7}\)
\(\Rightarrow z=\frac{7}{3}\)
Mà \(\frac{7}{3}\notin N\)
Do đó không có x ;y ; z thỏa mãn đề bài .
\(1-\frac{1}{2+\frac{1}{3}}=1-\frac{1}{\frac{7}{3}}=1-\frac{3}{7}=\frac{4}{7}=\frac{1}{\frac{7}{4}}=\frac{1}{1+\frac{3}{4}}=\frac{1}{1+\frac{1}{\frac{4}{3}}}=\frac{1}{1+\frac{1}{1+\frac{1}{3}}}\)
Vậy, x = 1; y = 1; z = 3
x;y;z có vai trò tương đương nên giả sử: \(0< x\le y\le z\)
Khi đó ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{3}{x}\Rightarrow\frac{3}{x}\ge1\Rightarrow x\le3\). Do x;y;z thuộc N* nên:
- x = 1 => không tìm được y,z thuộc N* - Loại
- x = 2: \(\Rightarrow\frac{2}{y}\ge\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\Rightarrow x=2\le y\le4\). Nếu y = 2 thì không tìm được z. Nếu y = 3; z = 6. Nếu y = 4 thì z = 4.
- x = 3 => y = 3; z = 3
Vậy có 3 bộ số thỏa mã đề bài là (2; 3; 6); (2 ; 4 ; 4) ; (3 ; 3 ; 3)
Đảo các bộ số này với x ; y; z ta có 10 nghiệm của PT.
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)
\(\Leftrightarrow\frac{y}{xy}=\frac{x}{xy}=\frac{1}{3}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{3}\)
\(\Leftrightarrow3\left(x+y\right)=xy\)
\(\Leftrightarrow3x+3y-xy=0\)
\(\Leftrightarrow x\left(3-y\right)+3y=0\)
\(\Leftrightarrow x\left(3-y\right)+3y-9=9\)
\(\Leftrightarrow x\left(3-y\right)-3\left(3-y\right)=9\)
\(\Leftrightarrow\left(x-3\right)\left(3-y\right)=9\)
Đến này bạn lập bảng ra nhé
tíc mình nha
Ta có \(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{y+z+x+z+x+y-2-3+5}\)
\(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
=> x + y + z = 1/2
Lại có \(\hept{\begin{cases}\frac{x}{y+z-2}=\frac{1}{2}\\\frac{y}{z+x-3}=\frac{1}{2}\\\frac{z}{x+y+5}=\frac{1}{2}\end{cases}}\Rightarrow\hept{\begin{cases}2x=y+z-2\\2y=x+z-3\\2z=x+y+5\end{cases}}\Rightarrow\hept{\begin{cases}3x=x+y+z-2\\3y=x+y+z-3\\3z=x+y+z+5\end{cases}}\Rightarrow\hept{\begin{cases}3x=-\frac{3}{2}\\3y=-\frac{5}{2}\\3z=\frac{11}{2}\end{cases}}\)
=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{5}{6}\\z=\frac{11}{6}\end{cases}}\)
Dễ thấy nếu x=0 thì y=z=0=>x=y=z=0 là 1 bộ giá trị phải tìm.
giả sử x,y,z khác 0 thì theo đề bài \(x+y+z\ne0\). Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
Thay kết quả vào dãy tỉ số ban đầu, ta được: \(x=\frac{-1}{2};y=\frac{-5}{6};z=\frac{11}{6}\)
Vậy ta có x=y=z =0 hoặc \(x=\frac{-1}{2};y=\frac{-5}{6};z=\frac{11}{6}\)
a, \(\frac{1}{x}=\frac{1}{6}+\frac{y}{3}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{6}+\frac{2y}{6}=\frac{1+2y}{6}\)
\(\Rightarrow1\cdot6=x\cdot\left(1+2y\right)\)
\(\Rightarrow x\left(1+2y\right)=6\)
\(\Rightarrow x;1+2y\inƯ\left(6\right)=\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
ta có bảng :
x | -1 | 1 | -2 | 2 | -3 | 3 | -6 | 6 |
1+2y | -6 | 6 | -3 | 3 | -2 | 2 | -1 | 1 |
y | loại | loại | 2 | -1 | loại | loại | 1 | 0 |
vậy_
phần b tương tự