Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\begin{cases}\left|x+\frac{1}{1.2}\right|\ge0\\\left|x+\frac{1}{2.3}\right|\ge0\\...\\\left|x+\frac{1}{99.100}\right|\ge0\end{cases}\)\(\left(\forall x\right)\)
\(\Rightarrow100x>0\)
=> x > 0
=> \(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+....+\left|x+\frac{1}{99.100}\right|\)
\(=x+\frac{1}{1.2}+x+\frac{1}{2.3}+.....+x+\frac{1}{99.100}=100x\)
\(\Rightarrow100x+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=100x\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=0\)
Dễ thấy VT \(\ne\)VP
=> \(x\in\varnothing\)
Ta có: \(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;...;\left|x+\frac{1}{99.100}\right|\ge0\)
=> \(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|\ge0\)
=> \(100x\ge0\Rightarrow x\ge0\)
=> \(\left|x+\frac{1}{1.2}\right|=\left(x+\frac{1}{1.2}\right);\left|x+\frac{1}{2.3}\right|=\left(x+\frac{1}{2.3}\right);...;\left|x+\frac{1}{99.100}\right|=\left(x+\frac{1}{99.100}\right)\)=> \(\left(x+\frac{1}{1.2}\right)+\left(x+\frac{1}{2.3}\right)+...+\left(x+\frac{1}{99.100}\right)=100x\)
=> 99x + \(\frac{99}{100}\) = 100x
=> x = \(\frac{99}{100}\)
`x :3*5 = 3/4 :(-5/6)`
`x :15 =3/4*(-6/5)=-9/10`
`x = -9/10 *15 =-27/2`
`x-1*2/2 = 8/x -1.2`
`x- 1*1 = 8/x -2`
`x-8/x = -2+1`
`x-8/x =-1`
`x^2 -8x =-x`
`x^2 -8x +x=0`
`x^2 -7x =0`
`x(x-7) =0`
`=>[(x=0),(x=7):}`
`a, x \div 15=-9/10`
`x=-9/10*14`
`x=-27/2`
`b, (x-1*2)/2=8/(x-1*2)`
\(\left(x-1\cdot2\right)\cdot\left(x-1\cdot2\right)=8\cdot2\)
`(x-1*2)^2=16`
`(x-1*2)^2=(+-4)^2`
\(\Rightarrow\left[{}\begin{matrix}x-1\cdot2=4\\x-1\cdot2=-4\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4+2\\x=\left(-4\right)+2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
\(\left|x+1,1\right|+\left|x+1,2\right|+\left|x+1,3\right|+\left|x+1,4\right|=5x\)
Vì GTTĐ luôn lớn hơn hoặc bằng 0 với mọi x
\(\Rightarrow\left|x+1,1\right|+...+\left|x+1,4\right|\ge0\forall x\)
\(\Rightarrow5x\ge0\forall x\)
\(\Rightarrow x\ge0\)
\(\Leftrightarrow x+1,1+x+1,2+x+1,3+x+1,4=5x\)
\(\Leftrightarrow4x+5=5x\)
\(\Leftrightarrow5x-4x=5\)
\(\Rightarrow x=5\)
Vậy x = 5
vì các giá trị tuyệt đối lớn hơn hoặc bằng 0=>5x lớn hơn hoặc bằng 0
=>x lớn hơn hoặc bằng 0
=>ta có thể phá dấu giá trj tuyệt đối
ta có x+1.1+x+1.2+x+1.3+x+1.4=5x
5=5x-4x=x
=>x=5