Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\dfrac{1}{3}\) + x = \(\dfrac{5}{6}\)
x = \(\dfrac{5}{6}\) - \(\dfrac{1}{3}\)
x = \(\dfrac{1}{2}\)
b. | x-1| - \(\dfrac{2}{5}\) = \(\dfrac{11}{10}\)
| x-1| = \(\dfrac{11}{10}\) + \(\dfrac{2}{5}\)
|x-1| = \(\dfrac{3}{2}\)
\(\left[{}\begin{matrix}x-1=\dfrac{3}{2}\\x-1=-\dfrac{3}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{2}+1\\x=-\dfrac{3}{2}+1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
c, \(\dfrac{1}{3}\) + \(\dfrac{2}{3}\) ( \(\dfrac{x}{2}\) + 3) = 1
\(\dfrac{2}{3}\) (\(\dfrac{x}{2}\) + 3) = 1 - \(\dfrac{1}{3}\)
\(\dfrac{2}{3}\) ( \(\dfrac{x}{2}\) + 3) = \(\dfrac{2}{3}\)
\(\dfrac{x}{2}\) + 3 = 1
\(\dfrac{x}{2}\) = 1 - 3
\(\dfrac{x}{2}\) = -2
\(x\) = -4
d, \(\dfrac{x+2}{3}\) = \(\dfrac{27}{x+2}\)
(x+2)2 = 27.3
(x+2) =92
\(\left[{}\begin{matrix}x+2=9\\x+2=-9\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=7\\x=-11\end{matrix}\right.\)
a. (x - 2)2 = 1
<=> (x - 2)2 = 12 = (-1)2
<=> \(\begin{cases}x-2=1\\x-2=-1\end{cases}\Leftrightarrow\begin{cases}x=3\\x=1\end{cases}\)
Vậy x \(\in\){1; 3}.
b. (2x - 1)3 = -8
<=> (2x - 1)3 = (-2)3
<=> 2x - 1 = -2
<=> 2x = -2 + 1
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2.
c. (x + 1/2)2 = 1/16
<=> (x + 1/2)2 = (1/4)2 = (-1/4)2
<=> \(\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{cases}\Leftrightarrow\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}\)
Vậy x \(\in\){-1/4; -3/4}.
d. (x - 2)3 = -27
<=> (x - 2)3 = (-3)3
<=> x - 2 = -3
<=> x = -3 + 2
<=> x = -1
Vậy x = -1.
a.\(\left(x-2\right)^2\)=1
<=> x-2=1 hoặc x-2=-1
<=> x= 3 hoặc x=1
b.\(\left(2x-1\right)^3\)=-8
\(\left(2x-1\right)^3\)=\(\left(-2\right)^3\)
2x-1=-2
2x=-1
x=-1/2
c.\(\left(x+\frac{1}{2}\right)^2\)=\(\frac{1}{16}\)
\(\left(x+\frac{1}{2}\right)^2\)=\(\left(\frac{1}{4}\right)^2\)hoặc \(\left(x+\frac{1}{2}\right)^2\)=\(\left(-\frac{1}{4}\right)^2\)
x+\(\frac{1}{2}\)=\(\frac{1}{4}\) hoặc x+\(\frac{1}{2}\)=-\(\frac{1}{4}\)
x=-\(\frac{1}{4}\)hoặc x=-\(\frac{3}{4}\)
d.\(\left(x-2\right)^3\)=-27
\(\left(x-2\right)^3\)=\(\left(-3\right)^3\)
x-2=-3
x=-1
\(a,\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\Rightarrow x=\dfrac{5}{6}\\ b,\Rightarrow\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{3}{2}\right)^9=\left(\dfrac{3}{2}\right)^4\\ \Rightarrow2x-1-9=4\\ \Rightarrow2x=14\Rightarrow x=7\\ c,\Rightarrow2^{x-1}+2^{x+2}=9\cdot2^5\\ \Rightarrow2^{x-1}\left(1+2^3\right)=9\cdot2^5\\ \Rightarrow2^{x-1}\cdot9=9\cdot2^5\\ \Rightarrow2^{x-1}=2^5\Rightarrow x-1=5\Rightarrow x=6\\ d,\Rightarrow\left(2x+1\right)^2=12+69=81\\ \Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
3^ x -1 = 1/243
3^x =1/243 +1
3^x = 244 / 243
Ta thấy đây ko phải lũy thừa của 3 => Ko có x thỏa mãn
81^-2x . 27^x =9^5
81^-2 . 81^x . 27^x =9^5
1/9^4 . (81.27)^x =9 ^5
3^6x = 9^5 : 1/9^4
3^6x = 9^9
3^6x = 3^18
=> 6x =18
x=3
2^x +2^x +3 =144
2.(2^x) =141
2^x+1 = 141
Ta thấy 141 ko phải lũy thừa của 2 => ko có x thỏa mãn
a: \(\Leftrightarrow\left(x-1\right)^2=81\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
a) Ta có: \(\left(2x-3\right)-\left(x-5\right)=\left(x+2\right)-\left(x-1\right)\)
\(\Leftrightarrow2x-3-x+5=x+2-x+1\)
\(\Leftrightarrow x+2=3\)
hay x=1
Vậy: x=1
b) Ta có: \(2\left(x-1\right)-5\left(x+2\right)=-10\)
\(\Leftrightarrow2x-2-5x-10=-10\)
\(\Leftrightarrow-3x=-10+10+2=2\)
hay \(x=-\dfrac{2}{3}\)
Vậy: \(x=-\dfrac{2}{3}\)
a, (2x - 3) - (x - 5) = (x + 2) - (x - 1)
2x - 3 - x + 5 = x + 2 - x + 1
(2x - x) + (-3 + 5) = (x - x) + (2 + 1)
x + 2 = 3
x = 1
Bài 1 :
\(C=\frac{1}{\left|x-2\right|+3}\)
\(C\le\frac{1}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy....
Bài 2 :
a) \(\left(\frac{1}{2}\right)^{3x-1}=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^{3x-1}=\left(\frac{1}{2}\right)^5\)
\(\Rightarrow3x-1=5\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
b) \(2\cdot3^{x-405}=3^{x-1}\)
\(2=3^{x-1}:3^{x-405}\)
\(2=3^{x-1-x+405}\)
\(2=3^{404}\)( vô lí )
=> x thuộc rỗng
c) \(\frac{1}{81}\cdot27^{2x}=\left(-9\right)^4\)
\(\frac{27^{2x}}{81}=9^4\)
\(\frac{\left(3^3\right)^{2x}}{3^4}=\left(3^2\right)^4\)
\(\frac{3^{6x}}{3^4}=3^8\)
\(3^{6x-4}=3^8\)
\(\Rightarrow6x-4=8\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
d) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
\(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
\(\left(4x-1\right)^{20}\cdot\left[\left(4x-1\right)^{10}-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}4x-1=0\\4x-1=\left\{\pm1\right\}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=\left\{\frac{1}{2};0\right\}\end{cases}}\)