K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Leftrightarrow100\left(\dfrac{1}{1}-\dfrac{1}{10}\right)-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]\cdot2=89\)

\(\Leftrightarrow\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow x+\dfrac{103}{50}=5\)

hay \(x=\dfrac{147}{50}\)

22 tháng 6 2018

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(A=1-\frac{1}{10}=\frac{9}{10}\)

\(\Rightarrow\frac{9}{10}.100-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=89\)

\(\Leftrightarrow90-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=89\)

\(\Rightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}=90-89=1\)

\(\Leftrightarrow x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}:1=5\)

\(\Rightarrow x=5-\frac{206}{100}=\frac{147}{50}\)

Vậy \(x=\frac{147}{50}.\)

17 tháng 7 2018

\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right).100-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)

\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).100-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)

\(\left(1-\frac{1}{10}\right).100-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)

\(90-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)

\(\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=1\)

\(\frac{5}{2}:\left(x+\frac{266}{100}\right)=\frac{1}{2}\Rightarrow x+\frac{266}{100}=5\Rightarrow x=\frac{117}{50}\)

Vậy x = 117/50

17 tháng 7 2018

Ta có:

 \(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right).100\\ =\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).100\)

   \(=\left(1-\frac{1}{10}\right).100\)    

   \(=\frac{9}{10}.100\)

   = 90

Khi đó đề bài sẽ thành : \(90-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)

                                \(\Rightarrow\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=1\)

                                \(\Rightarrow\frac{5}{2}:\left(x+\frac{266}{100}\right)=\frac{1}{2}\)

                                \(\Rightarrow x+\frac{266}{100}=5\)

                               \(\Rightarrow x=\frac{117}{50}\)

Vậy \(x=\frac{117}{50}\)

3 tháng 7 2015

Bài 1:

Đặt \(A=\frac{2}{1x2}+\frac{2}{2x3}+\frac{2}{3x4}+...+\frac{2}{18x19}+\frac{2}{19x20}\)

\(\frac{A}{2}=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{18x19}+\frac{1}{19x20}\)

\(\frac{A}{2}=\frac{2-1}{1x2}+\frac{3-2}{2x3}+\frac{4-3}{3x4}+...+\frac{19-18}{18x19}+\frac{20-19}{19x20}\)

\(\frac{A}{2}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}=\frac{19}{20}\)

\(A=\frac{2x19}{20}=\frac{19}{10}\)

Bài 2:

Đặt \(B=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{8x9}+\frac{1}{9x10}\)

Làm tương tự câu 1 có \(B=1-\frac{1}{10}=\frac{9}{10}\)

\(Bx100=\frac{9}{10}x100=90\)

=> \(\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=1\)

=> \(\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]=\frac{1}{2}\)

=>  \(x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}=5\Rightarrow x=5-\frac{206}{100}=\frac{294}{100}=\frac{147}{50}\)

3 tháng 7 2015

bài 1 đáp án là:19/10

2:147/50

 

15 tháng 8 2016

ta có 2/1.2+2/2.3+2/3.4+...+2/8.9+2/9.10

=2/1-2/2+2/2-2/3+2/3-2/4+...+2/8-2/9+2/9-2/10

=2/1-2/10

=9/5

15 tháng 8 2016

Đặt A = \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{8.9}+\frac{2}{9.10}\)

\(A\times2=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\)

\(A\times2=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(A\times2=\frac{1}{1}-\frac{1}{10}\)

\(A=\frac{9}{10}\times\frac{1}{2}=\frac{9}{20}\)

26 tháng 7 2018

\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\right)\cdot100-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=89\)

\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\cdot100-\left[\frac{5}{2}:\left(x+\frac{103}{50}\right)\right]\cdot2=89\)

\(\left(1-\frac{1}{10}\right)\cdot100-\frac{5}{2}:\left(x+\frac{103}{50}\right)\cdot2=89\)

\(\frac{9}{10}\cdot100-\frac{5}{2}\cdot2:\left(x+\frac{103}{50}\right)=89\)

\(90-5\cdot\left(x+\frac{103}{50}\right)=89\)

\(5\cdot\left(x+\frac{103}{50}\right)=1\)

\(x+\frac{103}{50}=\frac{1}{5}\)

\(x=-\frac{93}{50}\)