K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

Để : \(\frac{3}{x+1}\in Z\) thì 3 chia hết cho n + 1

=> n + 1 thuộc Ư(3) = {-3;-1;1;3}

Ta có bảng ; 

n + 1-3-113
n-4-202
11 tháng 7 2017

cảm ơn bạn nha # Nguyễn Việt Hoàng
bạn giúp mik những câu sau được không

24 tháng 6 2021

`a)C=((2x^2+1)/(x^3-1)-1/(x-1)):(1-(x^2-2)/(x^2+x+1))`

`ĐK:x ne 1`

`C=((2x^2+1-x^2-x-1)/(x^3-1)):((x^2+x+1-x^2+2)/(x^2+x+1))`

`C=((x^2-x)/(x^3-1)):((x+3)/(x^2+x+1))`

`C=x/(x^2+x+1)*(x^2+x+1)/(x+3)`

`C=x/(x+3)`

`b)|1-x|+2=3(x+1)`

`<=>|1-x|+2=3x+3`

`<=>|1-x|=3x+1(x>=-1/3)`

`**1-x=3x+1`

`<=>4x=0<=>x=0(tmđk)`

`**x-1=3x+1`

`<=>2x=-2`

`<=>x=-1(l)`

Thay `x=0` vào C

`=>C=0`

`c)C in ZZ`

`=>x vdots x+3`

`=>x+3-3 vdots x+3`

`=>3 vdots x+3`

`=>x+3 in Ư(3)={+-1,+-3}`

`=>x in {-2,-4,0,-6}`

`d)|C|>C`

Mà `|C|>=0`

`=>C<0`

`<=>x/(x+3)<0`

Để 1 p/s `<=0` thì tử và mẫu trái dấu mà `x<x+3`

`=>` \(\begin{cases}x<0\\x+3>0\\\end{cases}\)

`<=>` \(\begin{cases}x>-3\\x<0\\\end{cases}\)

`<=>-3<x<0`

24 tháng 6 2021

thank you AK

 

a: A nguyên

=>3x+1 chia hết cho 2-x

=>3x-6+7 chia hết cho x-2

=>x-2 thuộc {1;-1;7;-7}

=>x thuộc {3;1;9;-5}

b: B nguyên

=>8x-4+6 chia hết cho 2x-1

=>2x-1 thuộc {1;-1;2;-2;3;-3;6;-6}

=>x thuộc {1;0;2;-1}

c: C nguyên

=>x-1 chia hết cho 2x+1

=>2x-2 chia hết cho 2x+1

=>2x+1-3 chia hết cho 2x+1

=>2x+1 thuộc {1;-1;3;-3}

=>x thuộc {0;-1;1;-2}

1 tháng 7 2023

Cảm ơn 

14 tháng 3 2022

a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)

\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)

b. -Để M thuộc Z thì:

\(\left(x^2+x-2\right)⋮\left(x+3\right)\)

\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)

\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)

\(\Rightarrow4⋮\left(x+3\right)\)

\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)

c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)

\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)

\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)

\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)

 

Chọn A

10 tháng 9 2021

a

1 tháng 7 2021

\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)

\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)

\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)

\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)