Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1-2x}{x+1}=\frac{-2\left(x+1\right)+3}{x+1}=-2+\frac{3}{x+1}\)
Để : \(A\inℤ\Leftrightarrow-2+\frac{1}{x+1}\inℤ\Leftrightarrow\frac{1}{x+1}\inℤ\)
\(\Leftrightarrow1⋮x+1\) hay \(x+1\inƯ\left(1\right)=\left\{-1,1\right\}\)
\(\Rightarrow x\in\left\{-2,0\right\}\)
Vậy : \(x\in\left\{-2,0\right\}\)
c: Để C nguyên thì \(x^2-3\in\left\{-1;1;5\right\}\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
\(b,B=\dfrac{2x-1}{x-1}=\dfrac{2\left(x-1\right)+1}{x-1}=2+\dfrac{1}{x-1}\)
Do \(2\in Z\Rightarrow\)\(\dfrac{1}{x-1}\in Z\Rightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(x-1\) | \(1\) | \(-1\) |
\(x\) | \(2\) | \(0\) |
\(A=12-\dfrac{5}{x+1}\in Z\\ \Leftrightarrow\dfrac{5}{x+1}\in Z\Leftrightarrow5⋮x+1\\ \Leftrightarrow x+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow x\in\left\{-6;-2;0;4\right\}\)
Để (x + 1)/(2x + 1) ∈ Z thì (x + 1) ⋮ (2x + 1)
⇒ 2(x + 1) ⋮ (2x + 1)
⇒ (2x + 2) ⋮ (2x + 1)
⇒ (2x + 1 + 1) ⋮ (2x + 1)
Để 2(x + 1) ⋮ (2x + 1) thì 1 (2x + 1)
⇒ 2x + 1 ∈ Ư(1)
⇒ 2x + 1 ∈ {-1; 1}
⇒ 2x ∈ {-2; 0}
⇒ x ∈ {-1; 0}
a) Đk: x#2 (*)
Với (*), A=(x - 2 + 5)/(x - 2)= 1 + 5/(x - 2)
A nguyên <=> x-2 thuộc Ư(5)={-5;-1;1;5}
=> S={-3;1;3;7}
b) Đk: x#-3
Với (*), A= (- 2x - 6 + 7)/(x + 3) = -2 + 7/(x+3)
A nguyên <=> x + 3 thuộc Ư(7)={1;-1;7;-7}
=> S = {-2;- 4;4;-10}
\(A=\frac{1-x}{1+2x}=\frac{1+2x-3x}{1+2x}=1-\frac{3x}{1+2x}\)