Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để P thuộc Z =>2n+1 chia hết cho n+5
=>2n+10-9 chia hết cho n+5
=>2(n+5)-9 chia hết cho n+5
=>9 chia hết cho n+5
\(\Rightarrow n+5\in\left\{-9;-3;-1;1;3;9\right\}\)
\(\Rightarrow n\in\left\{-14;-8;-6;-4;-2;4\right\}\)
A=(2n-4+1)/(n-2)= 2 + 1/(n-2)
Để A đạt giá trị lớn nhất thì (n-2) phải là số nguyên dương và đạt giá trị nhỏ nhất.
=> n-2 =1
=> n=3
Đs: n=3
A=37-|x-8|
Ta có:|x-8| >=0 với mọi x thuộc Z
=> 37-|x-8| =< 37 hay A =< 37
Dấu "=" <=> |x-8|=0 <=> x-8=0 <=> x=8
Vậy MaxA=37 đạt được khi x=8
\(A=5-|x+1|\)
Vì \(|x+1|\ge0\)=> \(A=5-|x+1|\le5\)
Dấu '=' xảy ra khi:
\(|x+1|=0\)=> x + 1 = 0 => x = -1
Vậy Amax = 5 khi x = -1
Chúc em học tốt!!!
C=\(\frac{5}{x-2}\)
để C bé nhất, thì 5 chia hết x-2
=>x-2\(\in\){1,-1,5,-5}
=>x\(\in\){3,1,7,-3}
D=\(\frac{x+5}{x-4}\)
để D bé nhất, thì x+5 chia hết x-4
<=>(x-4)+9 chia hết x-4
=>9 chia hết x-4
=>x-4\(\in\){1,-1,3,-3,9,-9}
=>x\(\in\){5,3,7,1,13,-5}