K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

Câu hỏi của hyun mau - Toán lớp 8 - Học toán với OnlineMath nhé

27 tháng 3 2017

Ta có:

\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\) thì:

\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)

\(=t^2-y^4+y^4=t^2\)

\(=\left(x^2+5xy+5y^2\right)^2\)

Vì \(x,y,z\in Z\) nên:

\(x^2\in Z,5xy\in Z,5y^2\in Z\)

\(\Leftrightarrow x^2+5xy+5y^2\in Z\)

Vậy \(A\) là số chính phương (Đpcm)

14 tháng 3 2018

Có : 

A = [(x+y).(x+4y)] . [(x+2y).(x+3y)] + y^4

   = (x^2+5xy+4y^2) . (x^2+5xy+6y^2) + y^4

   = (x^2+5xy+5y^2)^2 - y^4 + y^4

   = (x^2+5xy+5y^2)^2 là số chính phương 

Tk mk nha

14 tháng 3 2018

cảm ơn nha

22 tháng 4 2019

\(\left(n^2-8\right)^2+36\)

\(=n^4-16n^2+64+36\)

\(=\left(n^4+20n^2+100\right)-36n^2\)

\(=\left(n^2+10\right)^2-\left(6n\right)^2\)

\(=\left(n^2+10-6n\right)\left(n^2+10+6n\right)\)

Để n là số nguyên tố thì \(\orbr{\begin{cases}n^2+10-6n=1\\n^2+10+6n=1\end{cases}}\)

Mà do \(n\in N\Rightarrow n^2+10-6n=1\)

\(\Leftrightarrow n^2-6n+9=0\)

\(\Leftrightarrow\left(n-3\right)^2=0\)

\(\Leftrightarrow n-3=0\)

\(\Leftrightarrow n=3\)

Vậy n=3.

7 tháng 10 2017

nhân cái đầu với cái cuối