Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đăt :
\(A=\dfrac{2}{1.4}+\dfrac{2}{4.7}+.........+\dfrac{2}{49.51}\)
\(\dfrac{3}{2}A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+..........+\dfrac{3}{49.51}\)
\(\dfrac{3}{2}A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+.........+\dfrac{1}{49}-\dfrac{1}{51}\)
\(\dfrac{3}{2}A=1-\dfrac{1}{51}\)
\(\dfrac{3}{2}A=\dfrac{50}{51}\)
\(\Rightarrow A=\dfrac{50}{51}:\dfrac{3}{2}=\dfrac{100}{153}\)
Ta có công thức nha sau :
\(\dfrac{a}{b.c}=\dfrac{a}{c-b}.\left(\dfrac{1}{b}-\dfrac{1}{c}\right)\)
Ta gọi biểu thức phân số là A
Vậy \(\dfrac{2}{1.4}=\dfrac{2}{4-1}.\left(1-\dfrac{1}{4}\right)\)
\(\dfrac{2}{4.7}=\dfrac{2}{7-4}.\left(\dfrac{1}{4}-\dfrac{1}{7}\right)\)
\(\dfrac{2}{7.10}=\dfrac{2}{10-7}.\left(\dfrac{1}{7}-\dfrac{1}{10}\right)\)
Ta thấy 50 - 49 = 1 , không bằng những biểu thức kia bằng 3 nên ta tách những biểu thức đó ra.
A= \(\dfrac{2}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}\right)+\dfrac{2}{49.50}\)
\(A=\dfrac{2}{3}.\left(1-\dfrac{1}{10}\right)+2.\left(\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(A=\dfrac{18}{30}+\left(\dfrac{1}{1225}\right)=\dfrac{736}{1225}\)
mink chắc chắn, ủng hộ nha
A = \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{13.16}\)
\(A=1-\left(\dfrac{1}{4}+\dfrac{1}{4}\right)-\left(\dfrac{1}{7}+\dfrac{1}{7}\right)-\dfrac{1}{10}-\dfrac{1}{13}-\dfrac{1}{16}\)
\(A=1-\dfrac{1}{10}-\dfrac{1}{13}-\dfrac{1}{16}\)
(13 - 10 = 3 ; 16 - 13 = 3)
\(3A=1-\dfrac{1}{16}\)
\(=\dfrac{15}{16}\)
Vậy ... tự tìm a đi! Lười quá!
Bài 2: Dễ ; tự làm
Bài3: Áp dụng tính chất phép cộng ta có:
a + b = b + a
=> A và B có phép tính giống nhau chỉ đổi chỗ
Không mất công tính.
Ta có thể kết luận phép tính trên bằng nhau
a, A= \(5\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)
\(A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=5\left(1-\dfrac{1}{100}\right)\)
\(A=5.\dfrac{99}{100}=\dfrac{99}{20}.\)
b, \(C=1.2.3+2.3.4+...+8.9.10\)
\(4C=1.2.3.4+2.3.4.\left(5-1\right)+...+8.9.10.\left(11-7\right)\)\(4C=1.2.3.4+2.3.4.5-1.2.3.4+...+8.9.10.11-7.8.9.10\)\(4C=8.9.10.11\)
\(C=\dfrac{8.9.10.11}{4}=1980.\)
c, https://hoc24.vn/hoi-dap/question/384591.html
Câu này bạn vào đây mình đã giải câu tương tự nhé.
\(1)A=\dfrac{5}{1.2}+\dfrac{5}{2.3}+...+\dfrac{5}{99.100}\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=5\cdot\dfrac{99}{100}\)
\(\Leftrightarrow A=\dfrac{99}{20}\)
a: x=4/27-2/3=4/27-18/27=-14/27
b: =>3/4x-1/4x=1/6+7/3
=>1/2x=1/6+14/6=5/2
hay x=5
c: =>13/10x=7/2+5/2=6
=>x=13/10:6=13/60
d: (3x+2)(-2/5x-7)=0
=>3x+2=0 hoặc 2/5x+7=0
=>x=-2/3 hoặc x=-35/2
Ta có :
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+..............+\dfrac{3}{40.43}+\dfrac{3}{43.46}\)
\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...............+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}\)
\(S=1-\dfrac{1}{46}< 1\)
\(\Rightarrow S< 1\rightarrowđpcm\)
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{40.43}+\dfrac{3}{43.46}\)
\(S=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{40.43}+\dfrac{1}{43.46}\)
\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}\)
\(S=1-\dfrac{1}{46}=\dfrac{45}{46}\)
\(\dfrac{45}{46}< 1\)
=> \(S< 1\)
\(\dfrac{5}{1\cdot4}+\dfrac{5}{4\cdot7}+\dfrac{5}{7\cdot11}+...+\dfrac{5}{\left(3x+1\right)\cdot\left(3x+4\right)}\\ =\dfrac{5}{3}\cdot\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot11}+...+\dfrac{3}{\left(3x+1\right)\cdot\left(3x+4\right)}\right)\\ =\dfrac{5}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{3x+1}-\dfrac{1}{3x+4}\right)\\ =\dfrac{5}{3}\cdot\left(1-\dfrac{1}{3x+4}\right)\\ =\dfrac{5}{3}-\dfrac{5}{9x+12}\)
\(a,\dfrac{x}{8}=\dfrac{7}{-2}\\ \Rightarrow x=-28\\ b,\dfrac{1-2x}{6}=\dfrac{-1}{2}\\ \Leftrightarrow2-4x=-6\\ \Leftrightarrow4x=8\\ \Leftrightarrow x=2\\ c,\dfrac{x+2}{3}=\dfrac{x+3}{4}\\ \Leftrightarrow4x+8=3x+9\\ \Leftrightarrow x=1\\ d,\dfrac{10}{2-x}=2\\ \Leftrightarrow4-2x=10\\ \Leftrightarrow2x=-6\\ \Leftrightarrow x=-3\)
a) \(x:\dfrac{6}{13}=\dfrac{13}{7}\\ \Rightarrow x=\dfrac{13}{7}.\dfrac{6}{13}\\ \Rightarrow x=\dfrac{6}{7}\)
b) \(\dfrac{4}{7}.x-\dfrac{2}{3}=\dfrac{1}{5}\\ \Rightarrow\dfrac{4}{7}.x=\dfrac{13}{15}\\ \Rightarrow x=\dfrac{91}{60}\)
c) \(\left(\dfrac{3}{10}-x\right):\dfrac{2}{5}=\dfrac{3}{5}\\ \Rightarrow\dfrac{3}{10}-x=\dfrac{6}{25}\\ \Rightarrow x=\dfrac{3}{50}\)
d) \(\dfrac{2}{3}x-\dfrac{7}{6}=\dfrac{5}{2}\\ \Rightarrow\dfrac{2}{3}x=\dfrac{11}{3}\\ \Rightarrow x=\dfrac{11}{2}\)
\(\dfrac{2}{1.4}x+\dfrac{2}{4.7}x+\dfrac{2}{7.10}x+...+\dfrac{2}{31.34}x=10\)
\(=>1,5.\left(\dfrac{2}{1.4}x+\dfrac{2}{4.7}x+\dfrac{2}{7.10}x+...+\dfrac{2}{31.34}x\right)=15\)
\(=>\dfrac{3}{1.4}x+\dfrac{3}{4.7}x+\dfrac{3}{7.10}x+...+\dfrac{3}{31.34}x=15\)
\(=>x\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{31.34}\right)=15\)
\(=>x\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)=15\)
\(=>x\left(1-\dfrac{1}{34}\right)=15\)
\(=>\dfrac{33}{34}x=15\)
\(=>x=\dfrac{170}{11}\)