Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4x^2-4x^3+x^4}{x^3-2x^2}=-2\) ( ĐKXĐ : \(x\ne0,x\ne2\) )
\(\Leftrightarrow4x^2-4x^3+x^4+2\left(x^3-2x^2\right)=0\)
\(\Leftrightarrow x^4-2x^3=0\)
\(\Leftrightarrow x^3\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\) ( Loại do không thỏa mãn ĐKXĐ )
Vậy : không có giá trị của x thỏa mãn đề.
a: Để A là số nguyên thì
x^3-2x^2+4 chia hết cho x-2
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
b: Để B là số nguyên thì
\(3x^3-x^2-6x^2+2x+9x-3+2⋮3x-1\)
=>\(3x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{\dfrac{2}{3};0;1;-\dfrac{1}{3}\right\}\)
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(\dfrac{4x-4}{2x^2-2}\)
\(=\dfrac{4\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2}{x+1}\)
Để phân thức có giá trị bằng -2 thì \(\dfrac{2}{x+1}=-2\)
\(\Leftrightarrow x+1=-1\)
hay x=-2(thỏa ĐK)
a) Ta có: \(A=\left(\dfrac{3}{2x+4}+\dfrac{x}{2-x}+\dfrac{2x^2+3}{x^2-4}\right):\dfrac{2x-1}{4x-8}\)
\(=\left(\dfrac{3\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}-\dfrac{2x\left(x+2\right)}{2\left(x+2\right)\left(x-2\right)}+\dfrac{2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right):\dfrac{2x-1}{4x-8}\)
\(=\dfrac{3x-6-2x^2-4x+4x^2+6}{2\left(x+2\right)\left(x-2\right)}\cdot\dfrac{4\left(x-2\right)}{2x-1}\)
\(=\dfrac{2x^2-x}{x+2}\cdot\dfrac{2}{2x-1}\)
\(=\dfrac{x\left(2x-1\right)}{x+2}\cdot\dfrac{2}{2x-1}\)
\(=\dfrac{2x}{x+2}\)
\(A=\frac{x^2+4x+7}{x-3}=\frac{x\left(x-3\right)+3x+4x+7}{x-3}=\frac{x\left(x-3\right)+7\left(x-3\right)+21+7}{x-3}\)\(=\frac{\left(x-3\right)\left(x+7\right)+28}{x-3}=x+7+\frac{28}{x-3}\)
(x-3) phải thuộc ước của 28=[+-1,+-2,+,4,+-7,+-14,+-28}
x={-25,-11,-4,1,2,4,5,7,10,17,31} nhiêu quá
\(ĐKXĐ:x\ne0;x\ne2\)
\(\frac{4x^2-4x^3+x^4}{x^3-2x^2}=-2\)
\(\Leftrightarrow4x^2-4x^3+x^4=-2\left(x^3-2x^2\right)\)
\(\Leftrightarrow4x^2-4x^3+x^4=-2x^3+4x^2\)
\(\Leftrightarrow x^4-2x^3=0\Leftrightarrow x^3\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\left(ktm\right)\)
Vậy không có x để phân thức bằng -2
Ta có : \(\frac{4x^2-4x^3+x^4}{x^3-2x^2}=-2\)
( ĐKXĐ : \(x\ne0,x\ne\pm\sqrt{2}\) )
\(\Leftrightarrow\frac{4x^2-4x^3+x^4}{x^3-2x^2}+2=0\)
\(\Leftrightarrow4x^2-4x^3+x^4+2\left(x^3-2x^2\right)=0\)
\(\Leftrightarrow-2x^3+x^4=0\)
\(\Leftrightarrow x^3\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\) ( Loại \(x=0\) không thỏa mãn ĐKXĐ )
Vậy : \(x=2\) thỏa mãn đề.