Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để B là số nguyên thì x chia hết cho 2x-1
=>2x chia hết cho 2x-1
=>2x-1+1 chia hết cho 2x-1
=>\(2x-1\in\left\{1;-1\right\}\)
=>\(x\in\left\{1;0\right\}\)
\(A=\dfrac{x^3-2x^2-15x}{x-5}=\dfrac{x\left(x^2-2x-15\right)}{x-5}=\dfrac{x\left(x+3\right)\left(x-5\right)}{x-5}=x\left(x+3\right)\)
\(A=x^2+3x=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
\(A_{min}=-\dfrac{9}{4}\)
\(a,\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}+\dfrac{4}{1-x^2}\\ =\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}-\dfrac{4}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^2+2x+1-x^2+2x-1-4}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{4x-4}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{4}{x+1}\)
b, \(P=2022\)
\(\Leftrightarrow\dfrac{4}{x+1}=2022\\ \Leftrightarrow4=2022x+2022\\ \Leftrightarrow2022x=-2018\\ \Leftrightarrow x=-\dfrac{1009}{1011}\)
c, P nguyên
\(\Leftrightarrow\dfrac{4}{x+1}\in Z\\ \Rightarrow4⋮\left(x+1\right)\\ \Rightarrow x+1\inƯ\left(4\right)\)
Ta có bảng:
x+1 | -4 | -2 | -1 | 1 | 2 | 4 |
x | -5 | -3 | -2 | 0 | 1(loại) | 3 |
Vậy \(x\in\left\{-5;-3;-2;0;3\right\}\)
\(\Leftrightarrow6x-3-4x+20< =4x-1+24\)
=>2x+17-4x-23<=0
=>-2x-6<=0
=>-2x<=6
hay x>=-3
\(\Leftrightarrow\dfrac{6x-3-4x+20-4x+1-24}{12}\le0\)
\(\Rightarrow\left\{{}\begin{matrix}-2x-6< 0\\-2x-6\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x\ne-3\end{matrix}\right.\)
a: \(B=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x-2}{2x-1}\)
\(=\dfrac{-4x^2-8x}{\left(x+2\right)}\cdot\dfrac{1}{2x-1}=\dfrac{-4x\left(x+2\right)}{\left(x+2\right)\left(2x-1\right)}=\dfrac{-4x}{2x-1}\)
b: |x|=3
=>x=3 hoặc x=-3
Khi x=3 thì \(B=\dfrac{-4\cdot3}{2\cdot3-1}=\dfrac{-12}{5}\)
Khi x=-3 thì \(B=\dfrac{-4\cdot\left(-3\right)}{2\cdot\left(-3\right)-1}=\dfrac{12}{-7}=\dfrac{-12}{7}\)
Để (2x+2)/(x+3) là số nguyên thì \(x+3\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{-2;-4;-1;-5;1;-7\right\}\)
\(\dfrac{2x+2}{x+3}=\dfrac{2\left(x+3\right)-4}{x+3}=2-\dfrac{4}{x+3}\in Z\\ \Leftrightarrow x+3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\\ \Leftrightarrow x\in\left\{-7;-5;-4;-2;-1;1\right\}\)