K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

\(B=\frac{x^2-2x+2018}{x^2}\)

\(\Rightarrow B=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2018}{x^2}\)

\(\Rightarrow B=1-\left(\frac{2}{x}-\frac{2018}{x^2}\right)\)

5 tháng 5 2018

         \(B=\frac{x^2-2x+2018}{x ^2}\)

\(\Rightarrow\)\(Bx^2=x^2-2x+2018\)

\(\Rightarrow\)\(\left(B-1\right)x^2+2x-2018=0\)   

Để phương trình có nghiệm thì:

      \(\Delta'=1-\left(B-1\right).\left(-2018\right)\)\(\ge0\)

  \(\Leftrightarrow\)\(2018B-2017\ge0\)

  \(\Leftrightarrow\) \(B\ge\frac{2017}{2018}\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=\frac{-1}{B-1}=\frac{-1}{\frac{2017}{2018}-1}=2018\)

Vậy  \(Min\)\(B=\frac{2017}{2018}\) \(\Leftrightarrow\)\(x=2018\)

p/s: tham khảo

        

5 tháng 5 2018

x2 là x2 đúng ko?

16 tháng 2 2017

\(\frac{5x^2-8x+8}{2x^2}=\frac{10x^2-16x+16}{4x^2}\)

\(=\frac{4x^2-16x+16+6x^2}{4x^2}=\frac{\left(2x-4\right)^2}{4x^2}+\frac{6}{4}\)\(\ge\)1,5

Dấu = xảy ra khi 2x-4= 0 => x = 2

Mk giải hơi tắt bn cố gắng suy nghĩ nha

28 tháng 8 2021

\(A=x^2+2x+9y^2-6y+2018\)

\(=x^2+2x+1+9y^2-6y+1+2016\)

\(=\left(x+1\right)^2+\left(3y-1\right)^2+2016\ge2016\forall x;y\)

Dấu ''='' xảy ra khi x = -1 ; y = 1/3 

Vậy GTNN của A bằng 2016 tại x = -1 ; y = 1/3 

24 tháng 5 2015

a)4x2-4x+3

=[(2x)2-4x+1]+2

=(2x+1)2+2 \(\ge\)2 với mọi x

Vậy GTNN của 4x2-4x+3 là 2 tại 

(2x+1)2+2=2

<=>(2x+1)2     =0

<=>2x+1       =0

<=>x             =\(\frac{-1}{2}\)

b)-x2+2x-3

=(-x2+2x-1)-2

= -(x2-2x+1)-2

=-(x-1)2-2 \(\le\)-2

Vậy GTLN của -x2+2x-3 là -2 tại :

-(x-1)2-2=-2

<=>-(x-1)2  =0

<=>x-1      =0

<=>x         =1

22 tháng 10 2020

đặt y = 1/x suy ra y <=1,

ta có P = 1 -2y+2016y^2 

Tự làm tiếp nhé

12 tháng 9 2021

a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)

b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)

c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)

\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)

d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)

\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)

e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)

\(minE=-20\Leftrightarrow x=-3\)

f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)

\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)

12 tháng 9 2021

\(A=x^2+3x+4=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\)

Do \(\left(x+\dfrac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(minA=\dfrac{7}{4}\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)

Mấy câu còn lại làm tương tự nhé em^^

3 tháng 7 2016

a.\(-\left(x^2-x-6\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{25}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Vậy Max của biểu thức = \(\frac{25}{4}\Leftrightarrow x=\frac{1}{2}\)

Chọn mình nha mình sẽ làm típ 1 bài nữa