Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T/C của gttđ là >= 0 nên
a) GTNN = -4
b) GTLN = 2
c) GTNN = 2
A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất
=> x - 1 lớn nhất
=> x là số dương vô cùng đề sai nhá
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
\(A=\left|x-5\right|+\left|x+3\right|=\left|5-x\right|+\left|x+3\right|\)
\(\ge\left|5-x+x+3\right|=8\)
Dấu "=" xảy ra <=> \(\left(5-x\right)\left(x+3\right)\ge0\)
<=> \(-3\le x\le5\)
Vậy MIN \(A=8\) khi \(-3\le x\le5\)
Tìm giá trị nhỏ nhất :
A = 3x2 - x + 1
GTNN cuả A là \(\frac{1}{6}\)
B = 9x2 - x + 3
GTNN cuả A là \(\frac{1}{18}\)
Study well
\(A=3\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right)+\frac{1}{4}\)
\(=3\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Vậy \(Min_A=\frac{1}{4}\) khi và chỉ khi x=1/2
\(B=9\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right)+\frac{3}{4}\)
=\(9\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vay \(Min_B=\frac{3}{4}\)khi và chỉ khi x=3/4
\(A=3x^2-x+1\)
\(\Leftrightarrow A=3x^2-x+\frac{1}{12}+\frac{11}{12}\)
\(\Leftrightarrow A=\frac{\left(\frac{1}{2}-\frac{x}{2}\right)x^2}{2}+\frac{11}{12}\)
Vì \(\frac{\left(\frac{1}{2}-\frac{x}{2}\right)x^2}{2}\ge0\)nên \(\frac{\left(\frac{1}{2}-\frac{x}{2}\right)x^2}{2}+\frac{11}{12}\ge\frac{11}{12}\)
Vậy \(A_{min}=\frac{11}{12}\Leftrightarrow x=0\)
\(A=\left|x-5\right|+\left|x+3\right|\ge\left|5-x+x+3\right|=8\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-5\ge0\\x+3\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge5\\x\ge-3\end{cases}\Rightarrow}x\ge5}\)
Vậy,..........