K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

\(A=\left|x-5\right|+\left|x+3\right|\ge\left|5-x+x+3\right|=8\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-5\ge0\\x+3\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge5\\x\ge-3\end{cases}\Rightarrow}x\ge5}\)

Vậy,..........

15 tháng 9 2016

T/C của gttđ là >= 0 nên 

a) GTNN = -4

b) GTLN = 2

c) GTNN = 2

9 tháng 11 2018

A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất 

=> x - 1 lớn nhất 

=> x là số dương vô cùng đề sai nhá

6 tháng 11 2016

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

6 tháng 11 2016

trị tuyệt đối phải bằng dương chứ sao bằng âm được

27 tháng 8 2018

Đây nè : https://olm.vn/hoi-dap/question/1296613.html

....

...

28 tháng 8 2018

\(A=\left|x-5\right|+\left|x+3\right|=\left|5-x\right|+\left|x+3\right|\)

  \(\ge\left|5-x+x+3\right|=8\)

Dấu "=" xảy ra  <=>  \(\left(5-x\right)\left(x+3\right)\ge0\)

                         <=>   \(-3\le x\le5\)

Vậy MIN   \(A=8\)  khi    \(-3\le x\le5\)

Tìm giá trị nhỏ nhất :

A = 3x2 - x + 1

GTNN cuả A là \(\frac{1}{6}\)

B = 9x2 - x + 3

     GTNN cuả A là    \(\frac{1}{18}\) 

Study well 

26 tháng 7 2019

\(A=3\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right)+\frac{1}{4}\)

\(=3\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Vậy \(Min_A=\frac{1}{4}\)  khi và chỉ khi x=1/2

\(B=9\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right)+\frac{3}{4}\)

=\(9\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vay \(Min_B=\frac{3}{4}\)khi và chỉ khi x=3/4

21 tháng 7 2019

\(A=3x^2-x+1\)

\(\Leftrightarrow A=3x^2-x+\frac{1}{12}+\frac{11}{12}\)

\(\Leftrightarrow A=\frac{\left(\frac{1}{2}-\frac{x}{2}\right)x^2}{2}+\frac{11}{12}\)

Vì \(\frac{\left(\frac{1}{2}-\frac{x}{2}\right)x^2}{2}\ge0\)nên \(\frac{\left(\frac{1}{2}-\frac{x}{2}\right)x^2}{2}+\frac{11}{12}\ge\frac{11}{12}\)

Vậy \(A_{min}=\frac{11}{12}\Leftrightarrow x=0\)

21 tháng 7 2019

áp dụng bất đẳng thức coossi cho 3 số không âm nha bạn