Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a, \(\sqrt{x}+98=498\)
\(\Leftrightarrow\sqrt{x}=400\Leftrightarrow\orbr{\begin{cases}x=-20\\x=20\end{cases}}\)
b, \(\frac{9}{7}+\sqrt{\frac{1600}{100}}-x+5=\frac{1920}{17}\)
\(\Leftrightarrow-x=\frac{1920}{17}-5-\frac{9}{7}-4\)
\(\Leftrightarrow-x=\frac{12216}{119}\Leftrightarrow x=-\frac{12216}{119}\)
c, \(3728+\left(-x\right)=0\)
\(\Leftrightarrow3728-x=0\Leftrightarrow x=3728\)
d, \(\left(-45\right)+6-\sqrt{x}=43\)
\(\Leftrightarrow-\sqrt{x}=43-6+45\)
\(\Leftrightarrow-\sqrt{x}=82\Leftrightarrow\sqrt{x}=-82\)
=> phương trình vô nghiệm vì \(\sqrt{x}\ge0\)
Bài 2:
Không có liên hệ cụ thể giữa a và b thì khó tìm lắm bạn ơi, vì nó có rất nhiều kết quả, nếu cần thì nhắn cho mình, mình liệt kê hết cho
A) ta có \(\frac{X}{2}=\frac{Y}{3}\)=>\(\frac{X}{8}=\frac{Y}{12}\)(1)
\(\frac{Y}{4}=\frac{Z}{5}\)=>\(\frac{Y}{12}=\frac{Z}{15}\)(2)
Từ (1)và (2)=>\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và x-y-z=28
đến đây tự làm
c) \(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
\(\Rightarrow\left(x-\frac{1}{5}\right)^{2004}=0\) và \(\left(y+0,4\right)^{100}=0\) và \(\left(z-3\right)^{678}=0\)
+) \(\left(x-\frac{1}{5}\right)^{2004}=0\Rightarrow x-\frac{1}{5}=0\Rightarrow x=\frac{1}{5}\)
+) \(\left(y+0,4\right)^{100}=0\Rightarrow y+0,4=0\Rightarrow y=-0,4\)
+) \(\left(z-3\right)^{678}=0\Rightarrow z-3=0\Rightarrow z=3\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(\frac{1}{5};-0,4;3\right)\)
a: \(\Leftrightarrow4x+\dfrac{3}{4}=2\cdot\dfrac{2}{5}+0.01\cdot10=\dfrac{9}{10}\)
=>4x=3/20
hay x=3/80
b: \(\Leftrightarrow\left|x\right|=4+\dfrac{1}{8}-9=-\dfrac{39}{8}\)(vô lý)
c: 2x(x-2/3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
d: \(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)
=>259-7x=3x+39
=>-10x=-220
hay x=22
Bài 2:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)
Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)
\(\Rightarrow4x+12=6x\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
Vậy x = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)
\(=\frac{14-5}{8}=\frac{9}{8}\)
+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)
+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)
+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)
Vậy ...
c) \(5^x+5^{x+1}+5^{x+2}=3875\)
\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)
\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)
\(\Rightarrow5^x.31=3875\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
Vậy x = 3
\(\frac{1}{20}\left(x-\frac{8}{15}\right)=-\frac{1}{30}\) \(\left(28+\frac{1}{5}\right).\left(\frac{3}{5}.x+\frac{4}{7}\right)=0\)
\(x-\frac{8}{15}=-\frac{1}{30}:\frac{1}{20}\) \(\frac{141}{5}.\left(\frac{3}{5}.x+\frac{4}{7}\right)=0\)
\(x-\frac{8}{15}=-\frac{2}{3}\) \(\frac{3}{5}.x+\frac{4}{7}=0\)
\(x=-\frac{2}{3}+\frac{8}{15}\) \(\frac{3}{5}.x=-\frac{4}{7}\)
\(x=-\frac{2}{15}\) \(x=-\frac{20}{21}\)
a.
\(\frac{1}{4}+\frac{1}{3}\div2x=-5\)
\(\frac{1}{3}\div2x=-5-\frac{1}{4}\)
\(\frac{1}{3}\div2x=-\frac{20}{4}-\frac{1}{4}\)
\(\frac{1}{3}\div2x=-\frac{21}{4}\)
\(2x=\frac{1}{3}\div\left(-\frac{21}{4}\right)\)
\(2x=\frac{1}{3}\times\left(-\frac{4}{21}\right)\)
\(2x=-\frac{4}{63}\)
\(x=-\frac{4}{63}\div2\)
\(x=-\frac{4}{63}\times\frac{1}{2}\)
\(x=-\frac{2}{63}\)
b.
\( \left(3x+\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)
TH1:
\(3x+\frac{1}{4}=0\)
\(3x=-\frac{1}{4}\)
\(x=-\frac{1}{4}\div3\)
\(x=-\frac{1}{4}\times\frac{1}{3}\)
\(x=-\frac{1}{12}\)
TH2:
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{12}\) hoặc \(x=-\frac{1}{2}\)
c.
\(\left|2x-3,5\right|=28\)
\(2x-3,5=\pm28\)
TH1:
\(2x-3,5=28\)
\(2x=28+3,5\)
\(2x=31,5\)
\(x=31,5\div2\)
\(x=15,75\)
TH2:
\(2x-3,5=-28\)
\(2x=-28+3,5\)
\(2x=-24,5\)
\(x=-24,5\div2\)
\(x=-12,25\)
Vậy \(x=-12,25\) hoặc \(x=-15,75\)
Chúc bạn học tốt
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)
\(=\frac{1}{x+3}-\frac{1}{x+34}\)
\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Rightarrow x=31\)
Vậy, x = 31
Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với \(x,k\inℝ;x\ne0;x\ne-k\)
Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)
a) \(\sqrt{x}+928=968\Leftrightarrow\sqrt{x}=968-928=40=\sqrt{160}\Rightarrow x=160\)
b) \(\frac{x}{28}+\frac{91}{28}=\frac{100}{28}\Leftrightarrow x+91=100\Leftrightarrow x=100-91=9\)
c) \(\left(-x\right)+88=0\Leftrightarrow-x=0-88=-88\Leftrightarrow x=88\)
d) \(\sqrt{x+1}=4=\sqrt{16}\Leftrightarrow x+1=16\Leftrightarrow x=16-1=15\)
Cái j thek cậu, tuy tớ chưa nhìn phần sau nhưng mà tớ thây cậu bị đơ rồi.
\(40=\sqrt{160}\)
Cậu hc ở đâu cái này đấy Minh.