Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x-y}{7-13}=\dfrac{42}{-6}=-7\)
=>x=-48; y=-91
2: x/y=3/4
=>4x=3y
=>4x-3y=0
mà 2x+y=10
nên x=3 và y=4
3: =>7x-3y=0 và x-y=-24
=>x=18 và y=42
4: =>7x-5y=0 và x+y=24
=>x=10 và y=14
1: f(1)=3 nên a+5=3
hay a=-2
2: f(-3)=-2 nên -3a+5=-2
=>-3a=-7
hay a=7/3
3: f(-1)=4 nên -a+5=4
hay a=1
4: f(1/2)=4 nên 1/2a+5=4
=>1/2a=-1
hay a=-2
1: =>-4x=14
=>x=-7/2
2: =>(x-5)(x+2)=0
=>x=5 hoặc x=-2
3: =>2^x*9=144
=>2^x=16
=>x=4
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
3^ x -1 = 1/243
3^x =1/243 +1
3^x = 244 / 243
Ta thấy đây ko phải lũy thừa của 3 => Ko có x thỏa mãn
81^-2x . 27^x =9^5
81^-2 . 81^x . 27^x =9^5
1/9^4 . (81.27)^x =9 ^5
3^6x = 9^5 : 1/9^4
3^6x = 9^9
3^6x = 3^18
=> 6x =18
x=3
2^x +2^x +3 =144
2.(2^x) =141
2^x+1 = 141
Ta thấy 141 ko phải lũy thừa của 2 => ko có x thỏa mãn
Giải
a, Ta có 2^x + 2^x+5 = 144
=> 2^x.1 + 2^x.2^5 = 144
=> 2^x.(1+2^5)=144
=> 2^x.33=144
=> 2^x=144/33=48/11
Vì 2^x luôn dương mà 48/11 là một phân số
=> Vô lý
Vậy không tìm được giá trị x thỏa mãn
b, Giải
Ta có |x+1|+|x+3|+|x+5|=7x
=> x+1+x+3+x+5=7x
=> 3x+9=7x
=> 9=7x-3x
=>9=4x
=> 9/4=x
Vậy x=9/4
a) \(2^x+2^{x+5}=144\)
\(\Rightarrow2^x+2^x\cdot2^5=144\)
\(\Rightarrow2^x+2^x\cdot32=144\)
\(\Rightarrow2^x\left(1+32\right)=144\)
\(\Rightarrow2^x\cdot33=144\)
\(\Rightarrow2^x=144:33\)
\(\Rightarrow2^x=\frac{48}{11}\)
\(\Rightarrow x\in\varnothing\)
Vậy không tìm được x thỏa mãn đề bài
b) \(|x+1|+|x+3|+|x+5|=7x\)
Ta có: \(\hept{\begin{cases}|x+1|\ge0\forall x\\|x+3|\ge0\forall x\\|x+5|\ge0\forall x\end{cases}\Rightarrow|x+1|+|x+3|+|x+5|\ge0\forall x\Rightarrow7x\ge0\forall x}\)
\(\Rightarrow|x+1|+|x+3|+|x+5|=x+1+x+3+x+5=7x\)
\(\Rightarrow\left(x+x+x\right)+\left(1+3+5\right)=7x\)
\(\Rightarrow3x+9=7x\)
\(\Rightarrow7x-3x=9\)
\(\Rightarrow4x=9\)
\(\Rightarrow x=\frac{4}{9}\)
Vậy x=\(\frac{4}{9}\)
\(\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=7x^{\left(1\right)}\)
Ta có \(\left|x+1\right|\ge0;\left|x+3\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow7x\ge0\Rightarrow x\ge0\)
Từ (1)\(\Rightarrow\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=7x\)
\(3x+9=7x\)
\(3x-7x=-9\)
\(-4x=-9\)
\(x=\frac{9}{4}\)
Phân tích 144 thành thừa số nguyên tố, ta được:
144 = 24.32
Mà theo đề:
2x-2 . 3y-3 . 5z-1 = 144
=> 2x-2 . 3y-3 . 5z-1 = 24 . 32 . 50 (Lưu ý: 50 = 1)
=> x - 2 = 4 và y - 3 = 2 và z - 1 = 0
=> x = 6 và y = 5 và z = 1
Vậy...
Ta thấy \(144=2^4.3^2\)
Ta có : \(2^{x-2}.3^{y-3}.5^{z-1}=144\)
\(=>2^{x-2}.3^{y-3}.5^{z-1}=2^4.3^2.5^0\)
\(=>\left(x-2\right)\left(y-3\right)\left(z-1\right)=4.2.0\)
\(=>x-2=4=>x=6\)
\(=>x-3=2=>x=5\)
\(=>z-1=0=>z=1\)