Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lớp 4?
a) \(\dfrac{x+1}{4}=\dfrac{36}{x+1}\)
\(\Rightarrow\left(x+1\right)^2=144\)
\(\Rightarrow\left[{}\begin{matrix}x+1=12\\x+1=-12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=11\\x=-13\end{matrix}\right.\)
Vậy: \(x\in\left\{11;-13\right\}\)
b) \(\dfrac{x}{7}=\dfrac{55x-4}{28}\)
\(\Rightarrow4x=55x-4\)
\(\Rightarrow-51x=-4\)
\(\Rightarrow x=\dfrac{4}{51}\)
Vậy: \(x=\dfrac{4}{51}\)
a) \(\dfrac{x + 1}{4} = \dfrac{36}{x + 1} \)
\(\Rightarrow\) \(( x + 1 )( x + 1 ) = 36 . 4 \)
\(\Rightarrow ( x + 1 )^2 = 144 \)
\(\Rightarrow ( x + 1 )^2 = 12^2 = ( -12 )^2 \)
\(\Rightarrow\) \(x + 1 ∈ \) { \(12 ; -12 \) }
\(\Rightarrow \) \(x \) \(∈ \) { \(11 ; -13 \) }
Vậy \(x ∈ \) { \(11 ; -13 \) }
a) x=8/9 - 1/6
x= 13/18
b) x=7/10+1/6
x= 13/15
c) 5/2-x=3/4
-x=3/4 - 5/2
-x=-7/4
x=7/4
Bài 1 :
\(a)\) Ta có :
\(3x=4y=6z\)
\(\Leftrightarrow\)\(\frac{3x}{12}=\frac{4y}{12}=\frac{6z}{12}\)
\(\Leftrightarrow\)\(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}\)
\(\Leftrightarrow\)\(\frac{2x}{8}=\frac{y}{3}=\frac{5z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{8}=\frac{y}{3}=\frac{5z}{10}=\frac{2x-5z}{8-10}=\frac{-36}{-2}=18\)
Do đó :
\(\frac{x}{4}=18\)\(\Rightarrow\)\(x=18.4=72\)
\(\frac{y}{3}=18\)\(\Rightarrow\)\(y=18.3=54\)
\(\frac{z}{2}=18\)\(\Rightarrow\)\(z=18.2=36\)
Vậy \(x=72\)\(;\)\(y=54\) và \(z=36\)
Chúc bạn học tốt ~
2) Ta có: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{a}{b+c}=\frac{1}{2}\Rightarrow2a=b+c\)
\(\frac{b}{c+a}=\frac{1}{2}\Rightarrow2b=c+a\)
\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow2c=a+b\)
Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}=\frac{2c.2a.2b}{b.c.a}=8\)
Vậy \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
\(\dfrac{3}{7}\times x=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}:\dfrac{3}{7}\)
\(x=\dfrac{7}{9}\)
\(x:\dfrac{6}{8}=\dfrac{2}{5}\)
\(x=\dfrac{2}{5}\times\dfrac{6}{8}\)
\(x=\dfrac{6}{20}=\dfrac{3}{10}\)
\(x-\dfrac{2}{3}=\dfrac{5}{6}\)
\(x=\dfrac{5}{6}+\dfrac{2}{3}\)
\(x=\dfrac{9}{6}=\dfrac{3}{2}\)
\(x-\dfrac{2}{5}-\dfrac{4}{35}=\dfrac{1}{7}\)
\(x=\dfrac{1}{7}+\dfrac{4}{35}+\dfrac{2}{5}\)
\(x=\dfrac{23}{35}\)
.
\(a.16307:y=45\left(dư\text{ }17\right)\)\(\Leftrightarrow45\text{×}y+17=16307\)
\(45\text{×}y=16307-17\)
\(45\text{×}y=16290\)
\(y=16290:45\)
\(y=362\)
\(b.y\text{×}52+y\text{×}48=36700\)
\(y\text{×}\left(52+48\right)=36700\)
\(y\text{×}100=36700\)
\(y=36700:100\)
\(y=367\)
a) 16307= 45*y+17 -> y=(16307-17)/45= 362
b) y*(52+48)= 36700 -> y=36700/100= 367
=1/x*(1/2+1/6+1/12+1/20+1/30+1/42).
Ta có:
1/2+1/6+1/12+1/20+1/30+1/42.
=1/1*2+1/2*3+1/3*4+1/4*5+1/5*6+1/6*7.
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7.
=1-1/7.
=6/7.
=>1/x*6/7=36.
=>1/x=36:6/7=42.
=>x=1/42.
Vậy x=1/42.