Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Leftrightarrow\left(x+1\right).\left(x+1\right)=8.2\)
\(\Leftrightarrow\left(x+1\right)^2=16\)
\(\Leftrightarrow\left(x+1\right)^2=2^4\)
\(\Leftrightarrow\left(x+1\right)=2^2\)
\(\Leftrightarrow\left(x+1\right)=4\)
\(\Leftrightarrow x=4-1=3\)
b. \(x:\left(9\frac{1}{2}-\frac{3}{2}\right)=\frac{0,4+\frac{2}{9}-\frac{2}{11}}{1,6+\frac{8}{9}-\frac{8}{11}}\)
\(\Leftrightarrow x:\left(\frac{10}{2}-\frac{3}{2}\right)=\frac{0,4+0,2-0,18}{1,6+0,8-0,72}\)
\(\Leftrightarrow x:\frac{7}{2}=\frac{\frac{21}{50}}{\frac{42}{25}}\)
\(\Leftrightarrow x=\frac{\frac{21}{50}}{\frac{42}{25}}.\frac{7}{2}\Leftrightarrow x=\frac{1}{4}.\frac{7}{2}=\frac{7}{8}\)
a ) \(\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Rightarrow\left(x+1\right).\left(x+1\right)=2.8\)
\(\Rightarrow\left(x+1\right)^2=16\)
\(\Rightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4-1\\x=-4-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Dấu " \(\orbr{\begin{cases}\\\end{cases}}\)là hoặc nha !!!
a) \(\left(3\frac{1}{2}-2x\right).3\frac{1}{3}=7\frac{1}{3}\)
\(\left(\frac{7}{2}-2x\right).\frac{10}{3}=\frac{22}{3}\)
\(\frac{7}{2}-2x=\frac{11}{5}\)
\(2x=\frac{13}{10}\)
\(x=\frac{13}{20}\)
Vậy ...
b) \(\frac{4}{9}x=\frac{9}{8}-0,125\)
\(\frac{4}{9}x=1\)
\(x=\frac{9}{4}\)
Vậy...
a ) (x+1)2=16
=>x+1=4 (vì x là số tự nhiên nên x+1=-4 là ko thỏa mãn)
=>x=3
b)x=2 ( cậu quy đồng rồi tự giải , có gì ko hiểu thì hỏi riêng mình )
Giải:
a) \(\dfrac{7}{x}< \dfrac{x}{4}< \dfrac{10}{x}\)
\(\Rightarrow7< \dfrac{x^2}{4}< 10\)
\(\Rightarrow\dfrac{28}{4}< \dfrac{x^2}{4}< \dfrac{40}{4}\)
\(\Rightarrow x^2=36\)
\(\Rightarrow x=6\)
b) \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{8}{9}\left(1\right)\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{2}{5}\left(2\right)\)
Từ (1) và (2), ta có:
\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\left(đpcm\right)\)
Bạn có thể viết thay dòng "Từ (1) và (2)" thành "Từ các điều kiện trên" bạn nhé !(bạn ko cần phải sửa, đây chỉ là gợi ý)
a)\(\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x\left(x+2\right)}=\frac{2}{9}\)
\(2\left(\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{x\left(x+2\right)}\right)=\frac{2}{9}\)
\(2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{x+2}=\frac{2}{9}:2\)
\(\frac{1}{x+2}=\frac{1}{6}-\frac{1}{9}\)
\(\frac{1}{x+2}=\frac{1}{18}\)
=>x+2=18
=>x=16
b tương tự nhân nó với 1/2
\(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{9}{1}+\frac{8}{2}+...+\frac{1}{9}\)
=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{10-1}{1}+\frac{10-2}{2}+...+\frac{10-9}{9}\)
=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{10}{1}-1+...+\frac{10}{9}-1\)
=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right]x=10-9+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}\)= \(\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}\)
=>\(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right]x=10\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)
=> \(x=10\)
b) Tương tự câu a
\(\frac{x+1}{9}+\frac{x+2}{8}+\frac{x+3}{7}+...+\frac{x+9}{1}=-9\)
\(\left(\frac{x+1}{9}+1\right)+\left(\frac{x+2}{8}+1\right)+\left(\frac{x+3}{7}+1\right)+...+\left(\frac{x+9}{1}+1\right)=0\)
\(\frac{x+10}{9}+\frac{x+10}{8}+\frac{x+10}{7}+...+\frac{x+10}{1}=0\)
\(\left(x+10\right).\left(\frac{1}{9}+\frac{1}{8}+\frac{1}{7}+...+1\right)=0\)
vì \(\frac{1}{9}+\frac{1}{8}+\frac{1}{7}+...+1\ne0\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
SKT_NTT làm đúng ùi -_- 100 %