Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\Leftrightarrow x^2-4x+4-x^2+9=6\)
\(\Leftrightarrow-4x+13=6\)
\(\Leftrightarrow-4x=-7\)
\(\Leftrightarrow x=\frac{7}{4}\)
Vậy \(x=1\).
b ) \(4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)
\(\Leftrightarrow4x^2-24x+36-4x^2+1=10\)
\(\Leftrightarrow-24x+37=10\)
\(\Leftrightarrow-24x=27\)
\(\Leftrightarrow x=\frac{9}{8}.\)
Mấy pài kia tương tự . :D
a, (x-2)^2 - (x-3)(x+3)=6
x^2-4x+4-(x^2-9)=6
x^2-4x+4-x^2+9=6
(x^2-x^2)-4x+13=6
-4x=-7
x=1,75
b, 4(x-3)^2 - (2x-1)(2x+1)=10
4(x^2-6x+9)-(4x^2-1)=10
4x^2-24x+36-4x^2+1=10
-24x+37=10
x=9/8
c,(x-4)^2 - (x+2)(x-2)=6
x^2-8x+16-(x^2-4)=6
x^2-8x+16-x^2+4=6
-8x+20=6
x=7/4
d, 9(x+1)^2 - (3x-2)(3x+2)=10
9(x^2+2x+1)-(9x^2-4)=10
9x^2+18x+9-9x^2+4=10
18x+13=10
x=-1/6
\(a,\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(-4x+13=6\)
\(-4x=6-13\)
\(-4x=-7\)
\(x=\frac{-7}{-4}\)
\(x=\frac{7}{4}\)
Vậy \(x=\frac{7}{4}\)
\(b,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)
\(4x^2-24x+36-4x^2+1=10\)
\(-24x+37=10\)
\(x=\frac{9}{8}\)
Vậy \(x=\frac{9}{8}\)
\(c,\left(x-4\right)^2-\left(x+2\right)\left(x-2\right)=6\)
\(x^2-8x+16-\left(x^2-4\right)=6\)
\(x^2-8x+16-x^2+4=6\)
\(-8x+20=6\)
\(x=\frac{7}{4}\)
Vậy \(x=\frac{7}{4}\)
\(d,9\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)
\(9\left(x^2+2x+1\right)-\left(9x^2-4\right)=10\)
\(9x^2+18x+9-9x^2+4=10\)
\(18x+13=10\)
\(x=\frac{-1}{6}\)
Vậy \(x=\frac{-1}{6}\)
1: =>x^2+4x-21=0
=>(x+7)(x-3)=0
=>x=3 hoặc x=-7
2: =>(2x-5-4)(2x-5+4)=0
=>(2x-9)(2x-1)=0
=>x=9/2 hoặc x=1/2
3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15
=>-9x^2+27x+9x^2+18x+9=15
=>18x=15-9-27=-21
=>x=-7/6
6: =>4x^2+4x+1-4x^2-16x-16=9
=>-12x-15=9
=>-12x=24
=>x=-2
7: =>x^2+6x+9-x^2-4x+32=1
=>2x+41=1
=>2x=-40
=>x=-20
a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)
\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)
\(\Leftrightarrow24x=-13\)
hay \(x=-\dfrac{13}{24}\)
a)(x+2).(x+3)-(x-2).(x+5)=10
( x^2 +3x+2x+6)-(x^2 +5x-2x-10)=10
x^2 +3x+2x+6-x^2 -5x+2x+10-10=0
2x+6=0
2x=-6
x=-3
a)\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6.\)
\(\Leftrightarrow x^2-4x+4-x^2+9-6=0\)
\(\Leftrightarrow-4x+7=0\)
\(\Leftrightarrow4x=7\Leftrightarrow x=1,75\)
\(b,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10.\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-4x^2+1-10=0\)
\(\Leftrightarrow-24x+27=0\)
\(\Leftrightarrow24x=27\Leftrightarrow x=1,125\)