K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2022

Tổng các hệ số của đa thức \(A\left(x\right)\) bất kì bằng giá trị của đa thức đó tại \(x=1\).

Thay \(x=1\) vào đa thức \(A\left(x\right)\) ta có:

\(A\left(1\right)=\left(3-4+1\right)^{2004}.\left(3+4+1\right)^{2005}=0\)

2 tháng 3 2020

- Tổng các hệ số của 1 đa thức A(x) bất kì bằng giá trị của đa thức đó tại x = 1. Vậy tổng các hệ số của đa thức :

\(A_{\left(x\right)}=A_{\left(1\right)}=\left(3-4.1+1^2\right)^{2004}\left(3+4.1+1^2\right)^{2005}\)

\(=0.\left(3+4.1+1^2\right)^{2005}=0\)

Vậy tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc là 0 .

19 tháng 3 2017

Tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc chính là giá trị của đa thức tại x=1.

Thay x=1 vào đa thức ta có:

A(1)=(3-7+1)2004.(3+4+1)2005

=(-3)2004+82005

10 tháng 6 2015

Tổng hệ số của đa thức trên sau khi bỏ dấu ngoặc chính là kết quả của đa thức khi x = 1

 Thế x = 1 vào đa thức trên ta được:

  \(\left(3-4.1+1^2\right)^{1998}.\left(3+4.1+1^2\right)^{2002}=0.8^{2002}=0\)

2 tháng 6 2015

Khi bỏ dấu ngoặc trong P(x) ta thu được đa thức P(x) có dạng 

P(x) = an.xn + an-1.xn-1 + an-2.xn-2 + ...+ a1.x + ao

Khi đó, tổng các hệ số của P(x) là an + an-1 + an-2 + ...+ a1 + ao 

mà P(1) =  an + an-1 + an-2 + ...+ a1 + ao 

=> Tổng các hệ số của P(x) bằng P(1) = (3 - 4.1 + 1)1998.(3 + 4.1 + 12)2000 = 0

12 tháng 6 2021

\(A\left(x\right)=\left(3-4+x^2\right)^{2004}\left(3+4x+x^2\right)^{2005}\)

Đa thức `A(x)` sau khi bỏ dấu ngoặc:

\(A\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)

Với `n = 2 . 2004 + 2 . 2005 = 8018`

Ta thay `x = 1` thì \(A\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\)

`=> A(1)` là tổng các hệ số của `A(x)` khi bỏ dấu ngoặc

Ta có: \(A\left(1\right)=\left(3-4.1+1^2\right)^{2004}\left(3+4.1+1^2\right)^{2005}\)

\(=0^{2004}.8^{2005}=0\)

Vậy tổng các hệ số của đa thức `A(x)` nhận được sau khi bỏ dấu ngoặc là `0`

12 tháng 6 2021

vì sao lại có anxn+an-1xn01 thế