K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

Tớ nghĩ là tổng các ước dương nhé .... chứ cộng thêm ước âm thì thành =0 á ...Cũng là số chính phương nhưng bài kiểu này hơi dễ.

Do p là số nguyên tố => \(p^2\) chỉ có các ước là : \(p^2;p;1\)

Ta có: \(p^2+p+1=k^2\left(k\in N\right)\Rightarrow4p^2+4p+1+3=4k^2\) 

\(\Rightarrow\left(2p+1\right)^2+3=4k^2\Rightarrow4k^2-\left(2p+1\right)^2=3\Rightarrow\left(2k-2p-1\right)\left(2k+2p+1\right)=3\)

giờ tìm ước á

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Lời giải:

Nếu $p=2$ thì $p^2+11=15$ chỉ có 4 ước nguyên dương

Nếu $p=3$ thì $p^2+11=20$ có đúng 6 ước nguyên dương

Nếu $p>3$ thì $p$ lẻ

$\Rightarrow p^2\equiv 1\pmod 4$

$\Rightarrow p^2+11\equiv 12\equiv 0\pmod 4(1)$

$p^2\equiv 1\pmod 3$

$\Rightarrow p^2+11\equiv 12\equiv 0\pmod 3(2)$

Từ $(1);(2)$ suy ra $p^2+11\vdots 12$

Đặt $p^2+11=12k$ với $k$ là số tự nhiên lớn hơn $1$

Lúc này, $p^2+11$ có ít nhất các ước nguyên dương sau: $1,2,3,4,6,12,k, 2k, 3k,4k, 6k, 12k$ (nhiều hơn 6 ước nguyên dương rồi)

Vậy $p=3$

3 tháng 9 2017

Số p4 có 5 ước số tự nhiên là 1 , p, p2 , p3 , p4
Ta có : 1 + p + p2 + p3 + p4 = n2     (n  N)
Suy ra : 4n= 4p+ 4p+ 4p+ 4p + 4 > 4p+ 4p+ p= (2p+ p)2
Và  4n2 < 4p+ p2 + 4 + 4p+ 8p+ 4p = (2p+ p + 2)2.
Vậy : (2p+ p)< (2n) < (2p+ p + 2)2.
Suy ra :(2n)2 = (2p+ p + 2)2 = 4p+ 4p+5p+ 2p + 1

vậy 4p + 4p+5p+ 2p + 1 = 4p+ 4p+4p+4p + 4   (vì cùng bằng 4n2 )

=> p- 2p - 3 = 0  => (p + 1) (p - 3) = 0

do p > 1  => p - 3 = 0   => p = 3

22 tháng 5 2020

phải là (2p+p+1)2