K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

7 tháng 8 2018

26 tháng 12 2017

Đáp án B

Ta có y ' = 3 ( m - 1 ) + ( 2 m + 1 ) sin   x  để hàm số nghịch biến trên  ℝ thì y ' ≤ 0  với mọi x xét BPT

3 ( m - 1 ) + ( 2 m + 1 ) sin   x ≤ 0 Nếu m = - 1 2  BPT luôn đúng. Với m > - 1 2  BPT ⇔ sin   x ≤ 3 ( 1 - m ) 2 m + 1  để hàm số luôn nghịch biến với mọi x thì  3 ( 1 - m ) 2 m + 1 ≥ 1 ⇒ - 1 2 < m ≤ 2 5 . Với m < - 1 2  BPT ⇔ sin   x ≥ 3 ( 1 - m ) 2 m + 1  để hàm số luôn nghịch biến với mọi x thì  3 ( 1 - m ) 2 m + 1 ≤ - 1 ⇒ m < - 1 2

Kết hợp hai trường hợp ta có  m ≤ 2 5

18 tháng 10 2019

20 tháng 7 2018

 

Đáp án là  B.

Ta có  y ' ( x ) = ( m - 1 ) x 2 - 2 ( m - 1 ) x - 1

TH1. m - 1 = 0 ⇔ m = 1 .Khi đó

y , = - 1 < 0 , ∀ x ∈ ℝ .Nên hàm só luôn nghịch biếến trên .

TH2. m - 1 ≢ 0 ⇔ m ≢ 1 .Hàm số luôn nghịch biến trên khi

y , ≤ 0 , ∀ x ∈ ℝ ⇔ ( m - 1 ) x 2 - 2 ( m - 1 ) x - 1 ≤ 0 , ∀ x ∈ ℝ ⇔ m - 1 < 0 ∆ ' ≤ 0 ⇔ m < 1 m ( m - 1 ) ≤ 0 ⇔ 0 ≤ m ≤ 1 . Kết hợp ta được 0 ≤ m < 1 .

 

3 tháng 1 2020

Đáp án A

24 tháng 5 2017

Đáp án A

Có y ' = m 2 − m − 2 x + m 2 . Hàm số nghịch biến trên  − 1 ; + ∞ ⇔ m 2 − m − 2 < 0 ⇔ m ∈ − 2 ; 1

8 tháng 5 2019

8 tháng 7 2018

Đáp án A

30 tháng 9 2018

Đáp án A.

Tập xác định: D = ℝ \ − m . Ta có y ' = m 2 − 4 x + m 2 .

Để hàm số nghịch biến trên khoảng − ∞ ; 1  thì ta phải có

m 2 − 4 < 0 1 ≤ − m ⇔ − 2 < m < 2 m ≤ − 1 ⇔ − 2 < m ≤ − 1

Lưu ý: Với cách cho đáp án như trong câu hỏi này, ta có làm như sau:

- Thử với  m = − 2   . Khi đó y = − 2 x + 4 x − 2 = − 2 x − 2 x − 2 = − 2 . Suy ra với   m = − 2 thì hàm số không nghịch biến trên − ∞ ; 1 . Từ đó loại được đáp án B và C.

- Thử với  m = − 1   . Khi đó y = − x + 4 x − 1 . Ta có y ' = − 3 x − 1 2 < 0 ∀ x ≠ 1 .

Suy ra hàm số nghịch biến trên các khoảng − ∞ ; 1  và  1 ; + ∞   . Vậy A là đáp án đúng.