K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

Đáp án B

Đặt t = sin x ⇒ t ' = c o s x ≥ 0 ; ∀ c ∈ 0 ; π 2  suy ra  0 ≤ t ≤ 1

Khi đó bài toán trở thành :Tìm m để hàm số f t = t 3 + 3 t 2 - m t - 4  đồng biến trên [0;1]

Ta có  f ' t = 3 t 2 + 6 t - m ≥ 0 ⇔ m ≤ 3 t 2 + 6 t ; ∀ t ∈ 0 ; 1 ⇔ m ≤ m i n 0 ; 1 g t = 3 t 2 + 6 t

Xét hàm số trên , suy ra m i n 0 ; 1 g t = g 0 = 0 . Vậy  m ≤ 0

12 tháng 2 2017

Đáp án đúng : C

19 tháng 1 2017

5 tháng 12 2019

Đáp án D

Ta có  y ' = cos x − m .

Hàm số nghịch biến trên R

⇔ y ' ≤ 0 , ∀ x ∈ ℝ ⇒ cos x − m ≤ 0 ∀ x ∈ ℝ ⇔ cos x ≤ m ∀ x ∈ ℝ ⇒ m ≥ M a x ℝ cos x = 1.

12 tháng 8 2018

Đáp án B

Để ý thấy lời giải bài toán sai ở bước 3 do m có thể nhỏ hơn 0

26 tháng 12 2019

18 tháng 10 2019

21 tháng 3 2019

Đáp án B

Ta có  y ' = 4 sin 2 x   cos   x sin   x - ( 2 m 2 - 5 m + 2 ) cos   x = cos   x [ ( 2 sin   x - 1 ) 2 - ( 2 m 2 - 5 m + 3 ) ]

Xét trên ( 0 ; π 2 )  ta thấy cos   x > 0 , để hàm số đồng biến trên khoảng này thì  ( 2 sin   x - 1 ) 2 - ( 2 m 2 - 5 m + 3 ) ≥ 0  với  ∀ x ∈ ( 0 ; π 2 )  hay ( 2 m 2 - 5 m + 3 ) ≤ 0 ⇒ 1 ≤ m ≤ 3 2  do m nguyên nên tồn tại duy nhất m=1

 

26 tháng 2 2019

9 tháng 1 2018