Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: \(B=\frac{n}{n-3}=\frac{n-3+3}{n-3}=\frac{n-3}{n-3}+\frac{3}{n-3}\)
Để B là số nguyên
\(\Rightarrow\frac{3}{n-3}\in z\)
\(\Rightarrow3⋮n-3\Rightarrow n-3\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)
nếu n -3 = 3 => n= 6 (TM)
n- 3 = - 3 => n = 0 (TM)
n -3 = 1 => n = 4 (TM)
n -3 = -1 => n = 2 (TM)
KL: \(n\in\left(6;0;4;2\right)\)
b) đề như z pải ko bn!
ta có: \(C=\frac{3n+5}{n+7}=\frac{3n+21-16}{n+7}=\frac{3.\left(n+7\right)-16}{n+7}=\frac{3.\left(n+7\right)}{n+7}-\frac{16}{n+7}=3-\frac{16}{n+7}\)
Để C là số nguyên
\(\Rightarrow\frac{16}{n+7}\in z\)
\(\Rightarrow16⋮n+7\Rightarrow n+7\inƯ_{\left(16\right)}=\left(16;-16;8;-8;4;-4;2;-2;1;-1\right)\)
rùi bn thay giá trị của n +7 vào để tìm n nhé ! ( thay như phần a đó)
Để 3n+2/n-1 có giá trị là số nguyên
=>3n+2 chia hết cho n-1
=>(3n+2)-(n-1) chia hết cho n-1
=>(3n+2)-3(n-1) chia hết cho n-1
=>(3n+2)-(3n-1) chia hết cho n-1
=> 3n+2 - 3n -1 chia hết cho n-1
=>1 chia hết cho n-1
=> n=0;2
hok tốt nha
Bài 1:
a: Để A là phân số thì n+1<>0
hay n<>-1
b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
Ta có:
\(A=\dfrac{3n+2}{n-1}=\dfrac{3\left(n-1\right)+5}{n-1}=\dfrac{3\left(n-1\right)}{n-1}+\dfrac{5}{n-1}\)
Để \(A\in Z\) thì \(5⋮n-1\) hay \(n-1\in U\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng giá trị:
\(n-1\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(2\) | \(0\) | \(6\) | \(-4\) |
dễ :D
6n-3/3n+1=6n+2-5/3n+1=2(3n+1)-5/3n+1=2(3n+1)/3n+1+5/3n+1=2+5/3n+1=>3n+1 thuộc Ư(5) mà Ư(5)={1;-1;5;-5}
=> n=0;-2/3( loại) ;4/3( loại); -2
3.a) tổng các cs của tử là 3 nên chia hết cho 3
b) tổng các cs của rử là 9 nên chia hết cho 9
a: Trường hợp 1: p=2
=>p+11=13(nhận)
Trường hợp 2: p=2k+1
=>p+11=2k+12(loại)
b: Trường hợp 1: p=3
=>p+8=11 và p+10=13(nhận)
Trường hợp 2: p=3k+1
=>p+8=3k+9(loại)
Trường hợp 3: p=3k+2
=>p+10=3k+12(loại)
co rat nhieu gia tr\i
Có vô số số hạng