K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2019

23 tháng 3 2017

Đáp án C

16 tháng 2 2018

Điều kiện:

cos x # 0 ⇔ x # π 2 + k π , k ∈ ℝ .

Ta có:

Đặt t=log|cosx|. Do 0 < | cos x | ≤ 1  nên log cos x ≤ 0  hay t ∈ ( - ∞ ; 0 ]

Phương trình trở thành t 2 - 2 m t - m 2 + 4 = 0 *

∆ ' = m 2 + m 2 - 4 = 2 m 2 - 4

Phương trình đã cho vô nghiệm nếu và chỉ nếu phương trình (*) vô nghiệm hoặc có 2 nghiệm (không nhất thiết phân biệt) t 1 , t 2  thỏa mãn 0 < t 1 ≤ t 2

TH1: (*) vô nghiệm

TH2: (*) có hai nghiệm thỏa mãn  0 < t 1 ≤ t 2

Kết hợp hai trường hợp ta được  m ∈ - 2 ; 2

Chọn đáp án C.

25 tháng 12 2018

Đáp án là  B.

Đặt t = x - 2 x  Đạo hàm  t , = 1 + 2 x 2 >   0

Do đó t ( 1 ) ≤ t ≤ t ( 2 ) , ∀ x ∈ [ 1 ; 2 ] , suy ra  - 1 ≤ t ≤ 1

Ta có  x 2 + 4 x 2 = t 2 + 4 , x 4 + 16 x 4 = ( x 2 + 4 x 2 ) 2 - 8 = ( t 2 + 4 ) 2 - 8 = t 4 + 8 t 2 + 8

Phương trình đã cho trở thành

t 4 + 8 t 2 + 8 - 4 ( t 2 + 4 ) - 12 t = m ⇔ t 4 + 4 t 2 - 12 t = m + 8   ( * )

Phương trình đã cho có nghiệm trong đoạn [1;2] khi và chỉ khi phương trình (*) có nghiệm trong [-1;1] Xét hàm số y=f(t)= t 4 + 4 t 2 - 12 t  trên [-1;1]

Đạo hàm  y , = 4 t 8 + 8 t - 12 ,   t ∈ ( - 1 ; 1 ) . y , = 4 ( t - 1 ) ( t 2 + t + 3 ) < 0 , ∀ t ∈ ( - 1 ; 1 )

Bảng biến thiên:

Do đó để phương trình đã cho có nghiệm trên [1;2] thì  - 7 ≤ m + 8 ≤ 17 ⇔ - 15 ≤ m ≤ 9

5 tháng 6 2019

27 tháng 5 2018

Đáp án A

Tập xác định của hàm số:  D = 0 ; 4

Ø  Xét tử số, đặt  g x = x x + x + 12

Em thấy  g x > 0     ∀ x ∈ 0 ; 4 g ' x = 3 x 2 x + 1 2 x + 12 > 0 ⇒ g x  là hàm dương và đồng biến trên [0;4]

Ø  Xét mẫu số, xét  h x = 5 − x + 4 − x

Em thấy  h x > 0     ∀ x ∈ 0 ; 4 h ' x = − 1 2 5 − x + − 1 2 4 − x < 0

=> h(x) là hàm dương và nghịch biến trên [0;4]

=>  1 h x là hàm đồng biến trên [0;4] ⇒ y = g x . 1 h x  là hàm đồng biến trên [0;4]

 

⇒ maxy = y 4 = 12 ;    miny = y 0 = 2 15 − 4 3

11 tháng 12 2019

Đáp án là C

1 tháng 3 2018

Đáp án C

Ta có : P T ⇔ log 2 cos x − 2 m log cos x − m 2 + 4 = 0  

Đặt t = log cos x ⇒ t ∈ − ∞ ; 0 .

Khi đó:  t 2 − 2 m t − m 2 + 4 = 0 *

PT đã cho vô nghiệm

⇔ * vô nghiệm hoặc có nghiệm dương.

TH1: (*) vô nghiệm  ⇔ Δ ' = 2 m 2 − 4 < 0 ⇔ − 2 < m < 2

TH2: (*) có nghiệm dương ⇔ Δ ' ≥ 0 S = 2 m > 0 P = 4 − m 2 > 0 ⇔ 2 ≤ m < 2  

Kết hợp 2 TH suy ra  m ∈ − 2 ; 2

11 tháng 1 2019

Đáp án C

Ta có: P T ⇔ log 2 cos x − 2 m log cos x − m 2 + 4 = 0

30 tháng 6 2017

Đáp án A

Phương pháp: Chia cả 2 vế cho 3x, đặt tìm điều kiện của t.

Đưa về bất phương trình dạng 

Cách giải :

Ta có 

Đặt khi đó phương trình trở thành

Ta có: 

Vậy