K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2021

x( x + y )2 - y + 1 = 0

<=> x( x2 + 2xy + y2 ) - y + 1 = 0

<=> x3 + 2x2y + xy2 - y + 1 = 0

<=> xy2 + ( 2x2 - 1 )y + x3 + 1 = 0 (*)

Coi (*) là phương trình bậc 2 ẩn y , x là tham số 

(*) có nghiệm <=> Δ ≥ 0 <=> ( 2x2 - 1 )2 - 4x( x3 + 1 ) ≥ 0

<=> 4x4 - 4x2 + 1 - 4x4 - 4x ≥  0

<=> -4x2 - 4x + 1 ≥ 0

<=> \(\frac{-1-\sqrt{2}}{2}\le x\le\frac{-1+\sqrt{2}}{2}\)

Vì x nguyên => x ∈ { -1 ; 0 } 

+) Với x = -1 (*) trở thành -y2 + y = 0 <=> y( 1 - y ) = 0 <=> y = 0 (tm) hoặc y = 1 (tm)

+) Với x = 0 (*) trở thành -y + 1 = 0 <=> y = 1 (tm)

Vậy ( x ; y ) = { ( -1 ; 0 ) , ( -1 ; 1 ) , ( 0 ; 1 ) }

23 tháng 6 2021

cậu ơi có thể giải bài này mà ko dùng denta đc ko ?

Ta có \(y^2+y=x^4+x^3+x^2+x\)

\(\Leftrightarrow\left(2y+1\right)^2=4x^4+4x^3+4x^2+x+1\)

Nếu \(\left(2y+1\right)^2< \left(2x^2+x\right)^2\Rightarrow3x^2+4x+1< 0\Rightarrow\frac{-1}{3}< x< -1\)vô lí

Vậy \(\left(2y+1\right)^2\ge\left(2x^2+x\right)^2\)mặt khác\(\left(2y+1\right)^2< \left(2x^2+x+2\right)^2\)nên theo điều kiện chặn ta sẽ tìm được x;y thỏa mãn

16 tháng 2 2021

\(x^2-\left(2007+y\right)x+3+y=0\)

\(\Leftrightarrow x^2-2007x-xy+3+y=0\)

\(\Leftrightarrow x^2-x-2006x+2006-xy+y=2003\)

\(\Leftrightarrow x\left(x-1\right)-2006\left(x-1\right)-y\left(x-1\right)=2003\)

\(\Leftrightarrow\left(x-1\right)\left(x-2006-y\right)=2003\)

Do x;y là số nguyên nên x-1 là ước của 2003, 2003 là số nguyên tố nên ta có \(x-1=\left\{-2003;-1;1;2003\right\}\)

\(\Rightarrow x=\left\{-2002;0;2;2004\right\}\)

Với x=-2002 thì -2002-2006-y=-1 => y=-4007

Với x=0 thì 0-2006-y=-2003 => y=-3

Với x=2 thì 2-2006-y=2003 => y=-4007

Với x=2004 thì 2004-2006-y=1 => y=-3

Vậy các cặp số nguyên (x;y) cần tìm là (-2002;-4007);(-2;-4007);(0;-3);(2004;-3)