K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 2 2022

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

\(\Rightarrow\left(y+1\right)^2\le4\Rightarrow\left[{}\begin{matrix}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{matrix}\right.\)

\(\Rightarrow y=\left\{-1;-3;1\right\}\)

Thế vào pt ban đầu tìm x nguyên tương ứng

18 tháng 2 2022

\(x^2+5y^2+2y-4xy-3=0\left(1\right)\\ \Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Ta có: \(\left(x-2y\right)^2+\left(y+1\right)^2=4\ge\left(y+1\right)^2\)

Mà \(y\in Z\Rightarrow\left(y+1\right)^2\in Z\Rightarrow\left(y+1\right)^2\in\left\{0;1;4\right\}\)

Với \(\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)

Thay y=-1 vào pt (1) ta tìm được \(\left\{{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)

Với \(\left(y+1\right)^2=1\Rightarrow\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)

Thay y=0 vào pt (1) ta không tìm được x nguyên 

Thay y=-2 vào pt (1) ta không tìm được x nguyên 

Với \(\left(y+1\right)^2=4\Rightarrow\left[{}\begin{matrix}y+1=-2\\y+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\)

Thay y=-3 vào pt (1) tìm được \(x=-6\)

Thay y=1 vào pt (1) tìm được \(x=2\)

\(x^2-4xy+4y^2+y^2+2xy+1-4\)

\(\left(x-2y\right)^2+\left(y+1\right)^2-4\)   > -4

Dấu = xảy ra khi \(\hept{\begin{cases}x-2y=0\\y+1=0\end{cases}< =>\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)

11 tháng 3 2019

Truy cập link để nhận thẻ cào 50k free :

http://123link.vip/7K2YSHxh

Nhanh không cả hết !

4 tháng 10 2020

Ta có: \(x-y=x^2+xy+y^2\Rightarrow x^2+\left(y-1\right)x+\left(y^2+y\right)=0\)

Coi phương trình trên là phương trình bậc hai theo ẩn x thì \(\Delta=\left(y-1\right)^2-4\left(y^2+y\right)=-3y^2-6y+1\)

Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-3y^2-6y+1\ge0\Rightarrow\frac{-3-2\sqrt{3}}{3}\le y\le\frac{-3+2\sqrt{3}}{3}\)

Mà y là số nguyên không âm nên y = 0

Thay y = 0 vào phương trình, ta được: \(x=x^2\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy (x, y) = { (0; 0); (1; 0) }

2 tháng 12 2019

\(x^2+5y^2+2y-4xy-3=0.\)

\(\Rightarrow x^2-4xy+4y^2+y^2+2y-3=0\)

\(\Rightarrow\left(x-2y\right)^2+\left(y+1\right)^2-4=0\)

Vậy cặp số x,y nhỏ nhất thỏa mãn là \(\hept{\begin{cases}x-2y=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x-2y=0\\y=-1\end{cases}\Rightarrow}\hept{\begin{cases}x+2=0\\y=-1\end{cases}}}\)

\(\Rightarrow x=-2;y=-1\)

\(x^2+5y^2+2y-4xy-3=0\)

=> \(\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)

=> \(\left(x-2y\right)^2+\left(y+1\right)^2-2^2=0\)

=> \(\left(x-2y\right)^2+\left(y+1-2\right)\left(y+1+2\right)=0\)

=> \(\left(x-2y\right)^2+\left(y-1\right)\left(y+3\right)=0\)

Mà   \(\left(x-2y\right)^2 \ge 0 \forall x\) 

=> \(\left(y-1\right)\left(y+3\right)\le0\)   Mặt khác \(y-1 < y+3 \)

=> \(\hept{\begin{cases}y-1\le0\\y+3\ge0\end{cases}}\)=> \(-3\le y\le1\)  mà y nhỏ nhất 

=> \(y=-3\)

Thay vào biểu thức, ta có \(\left(x+6\right)^2+\left(-3-1\right)\left(-3+3\right)=0\) => \(\left(x+6\right)^2=0\)  => \(x+6=0\) => \(x=-6\)

    Vậy x=-6 , y=-3

26 tháng 9 2016

k mk nha

7 tháng 11 2019

\(x^2-4xy+5y^2=2\left(x-y\right)\)

\(\left(x-2y\right)^2-2\left(x-2y\right)+1+y^2-2y+1=2\)

\(\left(x-2y-1\right)^2+\left(y-1\right)^2=1^2+1^2\)

\(\left(x-2y-1\right)^2=1\)

\(\left(y-1\right)^2=1\)

\(y-\left(1^2-1\right)\)

\(y=2\left|x=1\right|\)

Hmmm....không chắc há cậu mik làm kiểu cô giao nên không có 4 đâu hem :)))) ???

:)