Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy pq+7 là số lẻ \(\Rightarrow\)pq chẵn\(\Rightarrow\)p=2 hoặc q=2
th1: p=2\(\Rightarrow\)q=3,7
thử lại thấy chỉ có q=3 đúng.
th2: q=2
neu p=2 thi 5p+q khong phai so nguyen to
neu p=3 thi ca hai thoa man
neu p>3 thi p co dang 3k+1;3k+2
(lam tiep...)
Ta có:\(y\left(x-1\right)=x^2+2\)
\(\Rightarrow y\left(x-1\right)-x^2=2\)
\(\Rightarrow y\left(x-1\right)-x^2+1=3\)
\(\Rightarrow y\left(x-1\right)-\left(x^2-1\right)=3\)
\(\Rightarrow y\left(x-1\right)-\left(x+1\right)\left(x-1\right)=3\)
\(\Rightarrow\left(y-x-1\right)\left(x-1\right)=3\)
Vì x,y nguyên nên ta có bảng
x-1 | 3 | 1 | -1 | -3 |
y-x-1 | 1 | 3 | -3 | -1 |
x | 4 | 2 | 0 | -2 |
y | 6 | 8 | 2 | 4 |
Vậy \(\left(x,y\right)\in\left\{\left(4,6\right);\left(2,8\right);\left(0,2\right);\left(-2,4\right)\right\}\) thỏa mãn
dễ thấy x phải là số lẻ
ta có \(x=2k+1\Rightarrow\left(2k+1\right)^2-2y^2=1\Leftrightarrow y^2=2k\left(k+1\right)\) nên k là ước của y
mà y là số nguyên tố nên k=1
nên \(\hept{\begin{cases}x=2k+1=3\\y^2=2k\left(k+1\right)=4\Rightarrow y=2\end{cases}}\)