K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2016

Chắc 1000%là: -2;-1;0

Cách 1 : a4 + b4≥ a3.b + a.b3 
Khi và chỉ khi a4 + b4 - a3.b - a.b3 ≥ 0 
Khi và chỉ khi a3 (a - b) - b3 (a - b) ≥ 0 
Khi và chỉ khi (a - b)(a3 - b3) ≥ 0 khi và chỉ khi (a - b)(a - b)(a2 + ab + b2) ≥ 0 
Khi và chỉ khi (a - b)2[(a + b/2)2 + 3.b3/4] ≥ 0 (hiển nhiên đúng với mọi a,b) 
Cách 2 : Ta có[ a2 - b2]2 ≥ 0 
=> a4 - 2.a2.b2 + b4 ≥ 0 
=> a4 + b4 ≥ 2.a2.b2 
=> a4 + b4 + a4 + b4 ≥ a4 + b4 + 2.a2.b2 
=> 2( a4 + b4) &ge ; ( a2 + b2)2 (1) 
Mặt khác (a - b)2≥ 0 
=> a2 - 2ab + b2 ≥ 0 
=> a2 + b2≥2ab 
=> (a2 + b2)( a2 + b2)≥2ab (a2 + b2) 
=> (a2 + b2)2 ≥2ab (a2 + b2) (2) 
Từ (1) và (2) => 2( a4 + b4 ) ≥ 2ab (a2 + b2) 
=> ( a4 + b4 )≥ a3.b + a.b3 
Cách 3 : 
( a4 + b4 ) -( a3.b + a.b3) = 1/2 (2 a4 + 2 b4 - 2 a3.b -2 a.b3) 
= 1/2 [(a4 - 2 a3.b + 

DD
8 tháng 3 2022

Ba số nguyên tố có tổng là \(38\)là một số chẵn nên trong ba số đó có số \(2\).

Tổng hai số còn lại là \(36\).

Gọi hai số đó là \(a,b\).

Ta có: \(a^2+b^2=\left(a+b\right)^2-2ab=36^2-2ab\)

Để \(\left(a^2+b^2\right)_{max}\)thì \(ab\)đạt min. 

Nếu \(a=b\)thì \(a=b=18\)không là số nguyên tố.

Không mất tính tổng quát, giả sử \(a>b>0\) 

Ta có nhận xét rằng \(a-b\)càng lớn thì \(ab\)càng nhỏ. 

Thật vậy, nếu ta thay \(a\)bằng \(a+1\)và \(b\)bằng \(b-1\)thì: 

\(\left(a+1\right)\left(b-1\right)=ab-a+b-1=ab-\left(a-b\right)-1< ab\)

Do đó để thỏa mãn ycbt thì ta cần tìm hai số nguyên tố \(a,b\)sao cho \(a+b=36\)và \(b\)nhỏ nhất. 

Với \(b=3\Rightarrow a=33\)loại. 

Với \(b=5\Rightarrow a=31\)(thỏa mãn) 

Vậy ba số nguyên tố thỏa mãn ycbt là \(2,5,31\).

Khi đó tổng bình phương lớn nhất là: \(2^2+5^2+31^2=990\).

8 tháng 3 2022

=990 nha ht

10 tháng 2 2016

Bài 1:Xét p là số chẵn thì p=2 nên p+11=2+11=13(thỏa mãn)

Xét p là số lẻ thì p>2 nên p+11 là số chẵn chia hết cho 2(không thõa mãn)

Vậy chỉ có p=2 thỏa mãn bài toán

Bài 2:Xét p=2 thì p+8=2+8=10 chia hết cho 2(không thỏa mãn)

Xét p=3 thì p+8=11;p+10=13 (thỏa mãn)

Xét p>3 thì p có dạng 3k+1 hoặc 3k+2(k\(\in\)N*)

Nếu p=3k+1 thì p+8=3k+1+8=3k+9=3(k+3) chia hết cho 3(không thỏa mãn)

Nếu p=3k+2 thì p+10=3k+2+10=3k+12=3(k+4) chia hết cho 3(không thỏa mãn)

Vậy chỉ có p=3 thỏa mãn bài toán

 Với p=2 thì 
p+8=2+8=10 (loại) 
Với p=3 thì 
p+8=3+8=11(chọn) 
Vì p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc 3k+2 
Với p=3k+1 
p+8=3k+1+8=3k+9chia hết cho 3 
Với p=3k+2 
p+8=3k+2+8=3k+10(chọn) 
Với p=3 hoặc 3k+2 thì 
p+8 sẽ nguyên tố 
a) 
Để p+11 nguyên tố thì p phải chẵn=> p=2.

Đặt \(p^n+144=a^2\left(a\in N\right)\)

\(\Rightarrow p^n=\left(a-12\right)\left(a+12\right)\)

Ta thấy : \(a-12+a+12=2a⋮2\)

\(\Rightarrow\left(a-12\right)\left(a+12\right)⋮2\)

\(\Rightarrow p^n⋮2\) mà $p$ nguyên tố \(\Rightarrow p=2\)

Khi đó ta có : \(2^n=\left(a-12\right)\left(a+12\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2^x=a-12\\2^y=a+12\end{matrix}\right.\) với $x+y=a; x,y \in N$,  \(y>x\)

\(\Rightarrow2^y-2^x=24\Rightarrow2^x\left(2^{y-x}-1\right)=24\)

Rồi bạn xét các TH để tìm ra giá trị đề bài nhé! Đến đây dễ rồi.

7 tháng 2 2016

do p là số nguyên tố =>p>=2
xét p=2 => p+10 =12 (không là số nguyên tố)
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố)
=> p=3 thỏa mãn đề bài
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài
p=3 là số nguyên tố duy nhất thỏa mãn đề bài

7 tháng 2 2016

moi hok lop 6 thoi

16 tháng 2 2016

p không tìm được đâu , 2 mũ mấy cũng không là số nguyên tố đâu

16 tháng 3 2016

chỉ có P=3 

dài lắm