K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2023

b.Gọi số cần tìm là a.

Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3

          a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5            và a là nhỏ nhất

          a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7

\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).

\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.

\(\Rightarrow\) a + 2 = 105 

\(\Rightarrow\) a = 103

20 tháng 1 2023

Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.batngo

28 tháng 1 2019

Gọi số đó là a. Ta có:

a chia cho 21 dư 2 => a + 19 chia hết cho 21

a chia cho 12 dư 5 => a + 19 chia hết cho 12

BCNN(21,12) = 22.3.7 = 84

=> a + 19 chia hết cho 84

=> a + 19 = 84p (p thuộc N*)

=> a = 84p - 19

=> a = 84p - 84 + 84 - 19

=> a = 84.(p - 1) + 65

=> a chia cho 84 dư 65

Vậy...

28 tháng 1 2019

a) 2

b)5

10 tháng 11 2021

fhrecvhhhfdvbnt

10 tháng 11 2021
16:3,23:5,40:7
DD
14 tháng 6 2021

Số tự nhiên đó là \(n\)thì ta có: \(n+1\)chia hết cho cả \(2,3,4,5\).

suy ra \(n+1\in BC\left(2,3,4,5\right)\)

Có \(BCNN\left(2,3,4,5\right)=60\)suy ra \(n+1\in B\left(60\right)\).

\(n+1=60\)\(\Leftrightarrow n=59⋮̸7\).

- \(n+1=120\Leftrightarrow n=119⋮7\).​

Vậy giá trị nhỏ nhất của \(n\)là \(119\).

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0
2 tháng 8 2017

1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:  

\(BCNN\left(4;5;6\right)=60.\)

\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)

\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)

\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)

Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301 

2 tháng 8 2017

Số cần tìm là 301

27 tháng 6 2017

  Gọi số cần tìm là a 
Do a chia 5 dư 1 nên a-1 chia hết cho 5 
Mà 10 chia hết cho 5 nên a- 1 + 10 chia hết cho 5 
=> a+9 chia hết cho 5 (1) 
Do a chia 7 dư 5 nên a-5 chia hết cho 7 
Mà 14 chia hết cho 7 nên a- 5 + 14 chia hết cho 7 
=> a+9 chia hết cho 7 (2) 
Từ (1) và (2) suy ra a+9 là bội của 5 và 7 
mà a nhỏ nhất nên a+9 = BCNN (5; 7) = 35 
=> a = 26 
Vậy số phải tìm là 26 

27 tháng 6 2017

  Gọi số cần tìm là a 
Do a chia 5 dư 1 nên a-1 chia hết cho 5 
Mà 10 chia hết cho 5 nên a- 1 + 10 chia hết cho 5 
=> a+9 chia hết cho 5 (1) 
Do a chia 7 dư 5 nên a-5 chia hết cho 7 
Mà 14 chia hết cho 7 nên a- 5 + 14 chia hết cho 7 
=> a+9 chia hết cho 7 (2) 
Từ (1) và (2) suy ra a+9 là bội của 5 và 7 
mà a nhỏ nhất nên a+9 = BCNN (5; 7) = 35 
=> a = 26 
Vậy số phải tìm là 26 

 ủng hộ mình nha