K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2015

Gọi STN đó là a

Ta có: \(a-15\in BC\left(20;25;30\right)\)và a chia hết cho 41

=> \(a-15\in BC\left(300\right)\)

Mà a<1000 nên a-15<985

=> \(a-15\in\left\{0;300;600;900\right\}\)

Hay \(a\in\left\{15;315;615;915\right\}\)

Mà a chia hết cho 41 nên a=615

           Vậy số tự nhiên đó là 615

tick nha !!!!!!!!!!!!!!!!!!

29 tháng 10 2015

Bài giải : 
Gọi số tự nhiên cần tìm là a ( a∈ N; a < 1000) 
Vì a chia cho 20, 25, 30 đều dư 15 nên a - 15 ⋮ 20, 25, 30 → a - 15 ∈BC(20,25,30) 
Ta có : BCNN(20, 25, 30) = 22.52.3=300
→ a - 15 = {300, 600, 900, 1200 , ...} 
→ a = {315, 615, 915, 1215, ... } 
Mà theo đề bài thì a < 1000 và a ⋮ 41 nên a = 615 
Vậy số tự nhiên cần tìm là 615.

BẠN TICK ĐÚNG CHO MÌNH NHÉ,CẢM ƠN BẠN RẤT NHÌU

 

16 tháng 2 2019

nếu bạn thích có thể chép bên trên .HOÀN TOÀN ĐÚNG

2 tháng 8 2017

1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:  

\(BCNN\left(4;5;6\right)=60.\)

\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)

\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)

\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)

Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301 

2 tháng 8 2017

Số cần tìm là 301

1 tháng 2 2019

14 hay 41 vậy bn

Gọi số tự nhiên cần tìm là a ( a∈∈ N; a < 1000) 
Vì a chia cho 20, 25, 30 đều dư 15 nên a - 15 ⋮ 20, 25, 30 →→ a - 15∈BC(20,25,30) 
Ta có : BCNN(20, 25, 30) = 22.52.3=300
→ a - 15 = {300, 600, 900, 1200 , ...} 
→ a = {315, 615, 915, 1215, ... } 
Mà theo đề bài thì a < 1000 và a ⋮ 41 nên a = 615 
Vậy số tự nhiên cần tìm là 615.

4 tháng 2 2017

Số đó là 615

27 tháng 10 2017

Bài 1:  Gọi số cần tìm là a.  \(\left(a\in N,a< 400\right)\)

Khi đó ta có a - 1 chia hết cho 2, 3, 4, 5 và 6.

Nói cách khác a - 1 chia hết BCNN(2,3,4,5,6) = 60

Vậy a có dạng 60k + 1.

Do a < 400 nên \(60k+1< 400\Rightarrow k\le6\)

Do a chia hết 7 nên ta suy ra a = 301

Bài 2. 

 Do số cần tìm không chia hết cho 2 và chia 5 thiếu 1 nên phải có tận cùng là 9.

Số đó lại chia hết cho 7 nên ta tìm được các số là :

7.7 = 49 (Thỏa mãn)

7.17 = 119 (Chia 3 dư 2 - Loại)

7.27 = 189 (Chia hết cho 3  - Loại)

7.37 = 259 ( > 200 - Loại)

Vậy số cần tìm là 49.

18 tháng 11 2017

  a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6) 

=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65 

mặt khác a chia hết cho 7 => a = 7m 

Vậy 7m = 60n + 1 

có 1 chia 7 dư 1 
=> 60n chia 7 dư 6 
mà 60 chia 7 dư 4 
=> n chia 7 dư 5 
mà n chỉ lấy từ 1 đến 6 => n = 5 

a = 60.5 + 1 = 301

28 tháng 11 2015

goi a la so hs can tim

khi xep hang 20, 25, 30 deu du 15 hs

=>a-15 chia het cho 20

    a-15 chia het cho 25

    a-15 chia het cho 30

    a<1000

=>a-15<1000

=>a-5 thuoc BC(20,25,30)

20=22x5

25=52

30=3x2x5

Thua so nguyen to chung va rieng la : 2, 3 va 5

BCNN(20,25,30)=22 x3x52 =300

BC(20,25,30)=B(300)=(0;300;600;900;1200;...)

=>a-15 thuoc (0,300;600;900;1200;...)

=>a thuoc (15;315;615;915;1215;...)

ma a chia het cho 41 va a<1000

=>a=615

Vay so hoc sinh  la 615

28 tháng 11 2015

a:25 dư 15 

a : 30 dư 15

=> a-15 chia hết 20;25;30

=> a-15 là BC của 20;25;30

BC(20;25;30) là {0;300;600;1800;..}

vì a<1000 => a-15 thuộc (0;300;600)

=> a=15

a=315

a=615

mặt khác a chia hết cho 41 => a=615

7 tháng 7 2017

(b) Gọi số cần tìm là a (a\(\varepsilon\)N* )và 100\(\le\)\(\le\) 999

Theo đầu bài ta có:

a=8.m+5=11.n+6\(\Rightarrow\) 8.m=11.n+6-5=11.n+1 =8.n+(3.n+1) (m,n \(\varepsilon\) N*) 

Vì 100\(\le\) a \(\le\) 999 \(\Rightarrow\) m>11; n>8

\(\Rightarrow\)3.n+1 \(⋮\) 8

\(\Rightarrow\)n=13

Vậy a =149