Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(n^2+3n+4=n\left(n+3\right)+4\text{ chia hết cho }n+3\)
khi \(4\text{ chia hết cho }n+3\)
mà n là số tự nhiên nên n+3=4 hay n=1
\(n^2-1\) chia hết cho 2 và 5
=> n2-1 chia hết cho 10
=> n2 có tận cùng bằng 1
=> n2=81
=> n=9
\(n^2+4\) chia hết cho \(n+2\)
\(\Rightarrow\left[n^2+2n-2n-4+8\right]\) chia hết cho \(n+2\)
\(\Rightarrow n\left(n+2\right)-2\left(n+2\right)+8\) chia hết cho \(n+2\)
\(\Rightarrow\) 8 chia hết cho n + 2
Mà \(Ư\left(8\right)=\left\{1;2;4;8\right\}\)
\(\Rightarrow n+2\in\left\{1;2;4;8\right\}\)
\(\Rightarrow n\in\left\{-1;0;2;6\right\}\)
n + 2 luôn chia hết cho n + 2 => n(n+2) chia hết cho n + 2
=> n2 + 2n chia hết cho n + 2
Mà n2 + 4 chia hết cho n + 2
Nên (n2 + 2n) - (n2 + 4) chia hết cho n + 2
=> 2n - 4 chia hết cho n + 2
2.(n + 2) luôn chia hết cho n + 2 Hay 2n + 4 chia hết cho n + 2
=> 2n + 4 - (2n - 4) chia hết cho n + 2
=> 8 chia hết cho n+ 2
=> n + 2 ∈ Ư(8) = {1;2;4;8}
+) n + 2 = 1 , n là số tự nhiên nên không có n thỏa mãn
+) n+ 2 = 2 => n = 0
:D
n2 + 3 chia hết cho n + 2
n + 2 chia hết cho n + 2
=> n(n + 2) chia hết cho n + 2
n2 + 2n chia hết cho n + 2
=> (n2 + 2n - n2 + 3) chia hết cho n + 2
2n - 3 chia hết cho n + 2
n + 2 chia hết cho n + 2
=> 2(n + 2) chia hết cho n + 2
2n + 4 chia hết cho n + 2
=>(2n + 4 - 2n + 3) chia hết cho n + 2
7 chia hết cho n + 2
n + 2 thuộc U(7) = {-7;-1;1;7}
n + 2 = -7 => n = -9
n + 2 = -1 => n = -3
n + 2 = 1 => n = -1
n + 2 = 7 => n = 5
Mà n là số tự nhiên nên n = 5
n^2+3 chia hết cho n+2
=>(n^2+4n+4)-4n-1 chia hết cho n+2
=>(n+2)^2 -(4n+1) chia hết cho n+2
=>4n+1 chia hết cho n+2(vì (n+2)^2 chia hết cho n+2)
=>4(n+2)-7chia hết cho n+2
=>7 chia hết cho n+2
=>n+2 thuộc Ư(7)
=>n+2=(1,7)
=> n=-1;5 mà n là số tự nhiên nên n=5
đáp số n=5