Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi ƯCLN (n.(n+1)/2,2n+3= n
=> n+ 3 : 7
2n+ 3 chia hết cho n
=> 2 n. n+3 =7 : 3
=>3n^3 +3n : hết cho n
3n + 1 =n + 7
Nếu thế 3n + 7 ^3
n= -3 + 7n
Vậy n = 21
Một số tự nhiên chia hết cho n và 3
P.s: Tương tự và ko chắc :>
bài này bạn đăng lần trước rồi mà
bạn có thể vô lại để xem lại bài nhé
Gọi d là UCLN của 7n + 10 và 5n + 7
Khi đó : 7n + 10 chia hết cho d , 5n + 7 chia hết cho d
<=> 5(7n + 10) chia hết cho d , 7(5n + 7) chia hết cho d
<=> 35n + 50 chia hết cho d , 35n + 49 chia hết cho d
<=> (35n + 50) - (35n + 49) chia hết cho d
<=> 35n + 50 - 35n - 49 chia hết cho d
<=> 1 chia hết cho d
=> d là ư(1)
=> d = 1
Vậy đpcm
để \(7⋮n+3\)
\(\Rightarrow n+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
ta có bảng:
n+3 | 1 | -1 | 7 | -7 |
n | -2 | -4 | 4 | -10 |
vì \(n\inℕ\)
=>\(n\in\left\{4\right\}\)
b)
\(18⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(18\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm9;\pm18\right\}\)
ta có bảng
2n+1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 9 | -9 | 18 | -18 | |
n | 0 | -1 | \(\frac{1}{2}\) | \(\frac{-3}{2}\) | 1 | -2 | \(\frac{3}{2}\) | \(\frac{-5}{2}\) | \(\frac{5}{2}\) | \(\frac{-7}{2}\) | 4 | -5 | \(\frac{17}{2}\) | \(\frac{-19}{2}\) |
mà \(x\inℕ\)
\(\Rightarrow x\in\left\{0;4;1\right\}\)
a) Có: n + 11 chia hết cho n - 1
=> n - 1 + 12 chia hết cho n - 1
=> 12 chia hết cho n - 1
=> n - 1 thuộc Ư(11) = {-11 ; -1 ; 1 ; 11}
=> n thuộc {-10 ; 0 ; 2 ; 12}
Mà n thuộc N nên n thuộc {0 ; 2 ; 12}
Vậy n thuộc {0 ; 2 ; 12}.
b) Có: 7n chia hết cho n - 3
=> 7n - 21 + 21 chia hết cho n - 3
=> 7 (n - 3) + 21 chia hết cho n - 3
=> 21 chia hết cho n - 3
=> n - 3 thuộc Ư(21) = {-21 ; -7 ; -3 ; -1 ; 1 ; 3 ; 7 ; 21}
=> n thuộc {-18 ; -4 ; 0 ; 2 ; 4 ; 6 ; 10 ; 24}
Mà n là số tự nhiên nên n thuộc {0 ; 2 ; 4 ; 6 ; 10 ; 24}
Vậy ...
c) Có: n2 + 2n + 6 chia hết cho n + 4
=> n2 + 4n - 2n + 8 - 2 chia hết cho n + 4
=> n (n + 4) - 2 (n + 4) - 2 chia hết cho n + 4
=> 2 chia hết cho n + 4
=> n + 4 thuộc Ư(2) = {-2 ; -1 ; 1 ; 2}
=> n thuộc {-6 ; -5 ; -3 ; -2}
Mà n là STN nên n thuộc rỗng
Vậy ...
d) Có: n2 + n + 1 chia hết cho n + 1
=> n (n + 1) + 1 chia hết cho n + 1
=> 1 chia hết cho n + 1
=> n + 1 thuộc Ư(1) = {-1 ; 1}
=> n thuộc {-2 ; 0}
Vậy ...
từ đề bài bạn sẽ có: (2n^2 + 3n + 1) + 2(2n + 3) chia hết cho 2n + 3. Vì 2(2n + 3) chia hết cho 2n + 3 => 2n^2 + 3n + 1 chia hết cho 2n + 3
Hay, bạn sẽ có 2n^2 + 2n + n + 1 = 2n(n +1) + (n+1) = (n+1)(2n +1) chia hết cho 2n + 3. đặt 2n + 3 = a (a khác 0)từ đó bạn sẽ có ((a -1)/2)(a -2) chia hết cho a. ở => (a-1)(a-2)/2 chia hết cho a.
bạn nhận thấy : (a-1)(a-2) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2 => (a-1)(a-2)/2 là số nguyên (với a là 2 số tự nhiên liên tiếp)
xét 2 trường hợp: a = 1 và a = 2 là bạn sẽ tìm ra n