Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi các chữ số của chúng lần lượt là; a,b,c
theo đề bài ta có:
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)
vì số đó là bội của 72 nên là bội của 9"
\(\Leftrightarrow a+b+c⋮9\)
áp dụng tính chất dãy tỉ sô bằng nhau ta có:
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\Rightarrow\frac{a}{6}=\frac{b}{6}=\frac{c}{6}\Rightarrow\frac{a+b+c}{6+6+6}\)
ta có:\(\frac{a}{1}\)là số nguyên nên: \(a+b+c⋮6\)
vậy tù đó => \(BC\left(9;6\right)=B\left(18\right)\)
TA CÓ;\(3\le a+b+c\le27\rightarrow a+b+c=18\)
\(\Leftrightarrow\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=3\)
Vậy:\(\frac{a}{1}=3\Rightarrow a=3\)
\(\frac{b}{2}=3\Rightarrow b=6\)
\(\frac{c}{3}=3\Rightarrow c=9\)
vậy số cần tím là:\(3.6.9=369\)
Shop hoa đỏ khách khảo khi he is rửa thực thực e which i ta được số is do Hà sĩ Hà to us đi Hà Huy đã đi ra đi Hà đi Hà gia giải khát social H
Lời giải:
Gọi 3 chữ số tạo nên số đó là $a,b,c$ tỉ lệ với $1,2,3$
Đặt $\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=t$
$a=t; b=2t; c=3t$
Số đó là bội của $72$ nên chia hết cho $9$
$\Rightarrow a+b+c\vdots 9$
$t+2t+3t\vdots 9$
$6t\vdots 9$
$\Rightarrow t\vdots 3$
$\Rightarrow t=0; 3; 6;....$
Nếu $t\geq 6$ thì $c=3t>10$ (vô lý)
Nếu $t=0$ thì $a=b=c=0$ (vô lý)
Vậy $t=3$
$\Rightarrow a=3; b=6; c=9$
Vì số đó chia hết cho $72$ nên số đó là $936$
Gọi các chữ số trong số cần tìm lần lượt là a;b;c
Vơi \(a:b:c=1:2:3\)
\(\Rightarrow\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)
Vì số đó chia hết cho 72
=> số đó chia hết cho 8 và 9
Mà \(0< a+b+c< 27\)
=> \(\left[\begin{array}{nghiempt}a+b+c=9\\a+b+c=18\end{array}\right.\)
(+) Với a+b+c=9
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{9}{6}=\frac{3}{2}\)
\(\Rightarrow\begin{cases}a=\frac{3}{2}\\b=3\\c=\frac{9}{2}\end{cases}\) ( Loại )
(+) Với a+b+c=18
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{18}{6}=3\)
\(\Rightarrow\begin{cases}a=3\\b=6\\c=9\end{cases}\)
=> Số cần tìm \(\in\left\{369;396;936;963;639;693\right\}\)
Mặt khác số cần tìm chia hết cho 8
=> Số cần tìm là 936
Gọi abc là số cần tìm.
\(\Rightarrow abc⋮27\Rightarrow abc⋮9\Rightarrow a+b+c⋮9\)
Có: \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}\)
Mà: \(0\le a+b+c\le27\Rightarrow a+b+c\in\left\{9;18;27\right\}\)
Xét các yêu cầu tỉ lệ 1,2,3 được \(\left(a,b,c\right)=\left(3,6,9\right)\)
Goi a,b,c la ca chu so theo thu tu tu nho den lon theo ti le voi 1;2;3
a/1=b/2=c/3 va a+b+c=72
Ap dung tinh chat day ti so bang nhau :
a/1=b/2=c/3=a+b+c/1+2+3=72/6=12
Suy ra :a/1=12=>a=1.12=12
b/2=12=>b=2.12=24
c/5=12=>c=5.12=60
Gọi các chữ số của số đó là \(a,b,c\left(a< b< c\right)\)
Theo đề bài , ta có : \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)
Vì số đó là bội của 27 nên cũng là bội của 9 \(\Rightarrow a+b+c⋮9\) \(\left(1\right)\)
Có \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)\(\Rightarrow\frac{a}{1}+\frac{b}{2}+\frac{c}{3}=\frac{a+b+c}{6}\)
Ta có : \(\frac{a}{1}\)là số nguyên nên \(a+b+c⋮6\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow a+b+c\in BC\left(9;6\right)=B\left(18\right)\)
Ta có : \(3\le a+b+c\le27\)nên \(a+b+c=18\)
\(\Rightarrow\frac{q}{1}=\frac{b}{2}=\frac{c}{3}=\frac{18}{6}=3\)
\(\Rightarrow a=3;b=6;c=9\)
Vậy số cần tìm là 369
Gọi các chữ số của số đó là a,b,c (a<b<c)
Theo đề ta có \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)
Vì số đó là bội của 72 nên cũng là bội của 9 =>\(a+b+c⋮9\) (1)
Có\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\) =>\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{6}\) Ta có \(\frac{a}{1}\) là số nguyên nên \(a+b+c⋮6\) (2)
Từ (1) và (2) => a+b+c \(\in BC\left(9;6\right)=B\left(18\right)\)
Ta có \(3\le a+b+c\le27\) nên a+b+c=18
=> \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{18}{6}=3\)
=>a=3, b=6, c=9
Vậy số cần tìm là 369
Số tự nhiên có 3 chữ số là bội của số 72 là : 144, 216, 288, 360, 432, 504, 576; 648; 720; 792; 864 vả 936. Trong các số tên chỉ có số 936 là thỏa mãn điều kiện các số từ nhỏ đến lớn theo tỷ lệ 1:2:3.