K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left(x,y\right)\in\left\{\left(-9;1\right);\left(-1;9\right);\left(-3;3\right)\right\}\)

b: \(\left(x,y\right)\in\left\{\left(1;7\right);\left(-7;-1\right)\right\}\)

c: \(\left(x,y\right)\in\left\{\left(11;-1\right);\left(-1;11\right)\right\}\)

15 tháng 1 2021

Bài 1:

A = 3(x + 1)2 + 5 

Ta có: (x + 1)2 \(\ge\) 0 Với mọi x

\(\Rightarrow\) 3(x + 1)2 \(\ge\) 0 với mọi x

\(\Rightarrow\) 3(x + 1)+ 5 \(\ge\) 5 với mọi x

Hay A \(\ge\) 5

Dấu "=" xảy ra khi và chỉ khi x + 1 = 5 hay x = -1

Vậy...

B = 2|x + y| + 3x2 - 10

Ta có: 2|x + y| \(\ge\) 0 với mọi x, y

3x\(\ge\) 0 với mọi x

\(\Rightarrow\) 2|x + y| + 3x2 - 10 \(\ge\) -10 với mọi x,y

Dấu "=" xảy ra khi và chỉ khi x + y = 0; x = 0

\(\Rightarrow\) x = y = 0

Vậy ...

C = 12(x - y)2 + x2 - 6

Ta có: 12(x - y)2 \(\ge\) 0 với mọi x; y

x2 \(\ge\) 0 với mọi x

\(\Rightarrow\) 12(x - y)2 + x2 - 6 \(\ge\) -6 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x = y = 0

Phần D ko rõ đầu bài nha vì D luôn có một giá trị duy nhất

Bài 2:

Phần A ko rõ đầu bài!

B = 3 - (x + 1)2 - 3(x + 2y)2

Ta có: -(x + 1)2 \(\le\) 0 với mọi x

-3(x + 2y)\(\le\) 0 với mọi x, y

\(\Rightarrow\) 3 - (x + 1)2 - 3(x + 2y)\(\le\) 3 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x = 2y; x + 1 = 0

\(\Rightarrow\) x = -1; y = \(\dfrac{-1}{2}\)

Vậy ...

C = -12 - 3|x + 1| - 2(y - 1)2

Ta có: -3|x + 1| \(\le\) 0 với mọi x

-2(y - 1)2 \(\le\) 0 với mọi y

\(\Rightarrow\)  -12 - 3|x + 1| - 2(y - 1)\(\le\) -12 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x + 1 = 0; y - 1 = 0

\(\Rightarrow\) x = -1; y = 1

Vậy ...

Phần D đề ko rõ là \(\dfrac{5}{2x^2}-3\) hay \(\dfrac{5}{2}\)x2 - 3 nữa

F = \(\dfrac{-5}{3}\) - 2x2

Ta có: -2x2 \(\le\) 0 với mọi x

\(\Rightarrow\) \(\dfrac{-5}{3}-2x^2\) \(\le\) \(\dfrac{-5}{3}\) với mọi x

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy ...

Chúc bn học tốt!

Giải:

a) \(\dfrac{-5}{8}=\dfrac{x}{16}\) 

\(\Rightarrow x=\dfrac{16.-5}{8}=-10\) 

\(\dfrac{3x}{9}=\dfrac{2}{6}\) 

\(\Rightarrow3x=\dfrac{2.9}{6}=3\) 

\(\Rightarrow x=1\)

b) \(\dfrac{x+3}{15}=\dfrac{1}{3}\)  

\(\Rightarrow x+3=\dfrac{1.15}{3}=5\) 

\(\Rightarrow x=2\)

\(\dfrac{6}{2x+1}=\dfrac{2}{7}\) 

\(\Rightarrow2x+1=\dfrac{6.7}{2}=21\) 

\(\Rightarrow x=10\)

c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\) 

\(\Rightarrow\dfrac{4}{x-6}=\dfrac{-12}{18}\) 

\(\Rightarrow x-6=\dfrac{18.4}{-12}=-6\) 

\(\Rightarrow x=0\) 

\(\Rightarrow\dfrac{y}{24}=\dfrac{-12}{18}\) 

\(\Rightarrow y=\dfrac{-12.24}{18}=-16\) 

 \(\dfrac{3-x}{-12}=\dfrac{16}{y+1}=\dfrac{192}{-72}\) 

\(\Rightarrow\dfrac{3-x}{-12}=\dfrac{192}{-72}\) 

\(\Rightarrow3-x=\dfrac{192.-12}{-72}=32\) 

\(\Rightarrow x=-29\) 

\(\Rightarrow\dfrac{16}{y+1}=\dfrac{192}{-72}\) 

\(\Rightarrow y+1=\dfrac{16.-72}{192}=-6\) 

d) \(\dfrac{-2}{3}< \dfrac{x}{5}< \dfrac{-1}{6}\) 

\(\Rightarrow\dfrac{-20}{30}< \dfrac{6x}{30}< \dfrac{-5}{30}\) 

\(\Rightarrow6x\in\left\{-18;-12;-6\right\}\) 

\(\Rightarrow x\in\left\{-3;-2;-1\right\}\) 

\(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\) 

\(\Rightarrow\dfrac{-8}{40}\le\dfrac{5x}{40}\le\dfrac{10}{40}\) 

\(\Rightarrow5x\in\left\{-5;0;5;10\right\}\) 

\(\Rightarrow x\in\left\{-1;0;1;2\right\}\) 

e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\) 

\(\Rightarrow\dfrac{x+46}{20}=x+\dfrac{2}{5}\) 

\(\Rightarrow\dfrac{x+46}{20}=\dfrac{5x+2}{5}\) 

\(\Rightarrow5.\left(x+46\right)=20.\left(5x+2\right)\) 

\(\Rightarrow5x+230=100x+40\) 

\(\Rightarrow5x-100x=40-230\) 

\(\Rightarrow-95x=-190\) 

\(\Rightarrow x=-190:-95\) 

\(\Rightarrow x=2\) 

\(y\dfrac{5}{y}=\dfrac{86}{y}\) 

\(\Rightarrow y+\dfrac{5}{y}=\dfrac{86}{y}\) 

\(\Rightarrow\dfrac{y^2+5}{y}=\dfrac{86}{y}\) 

\(\Rightarrow y^2+5=86\) 

\(\Rightarrow y^2=86-5\) 

\(\Rightarrow y^2=81\) 

\(\Rightarrow\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\) 

Chúc bạn học tốt!

19 tháng 12 2021

Bài 1: 

a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{2;0;4;-2\right\}\)

Giải:

a) \(y^2=3-\left|2x-3\right|\) 

Vì \(-\left|2x-3\right|\le0\forall x\) nên \(3-\left|2x-3\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )

TH1:

\(y^2=0\) 

\(\Rightarrow y=0\) 

\(\Rightarrow\left|2x-3\right|=3\) 

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) 

TH2:

\(y^2=1\) 

\(\Rightarrow y=\pm1\)

20 tháng 2 2021

\(a.\)

\(\dfrac{x}{2}=\dfrac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)

\(\Rightarrow x=5\cdot2=10\\ y=5\cdot5=25\)

\(b.\)

\(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{x+2}{1}=\dfrac{y+10}{5}\)

\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y+10-3x-6}{5-3}=\dfrac{2-4}{2}=-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+6=-3\\y+10=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-15\end{matrix}\right.\)

\(c.\)

\(\dfrac{x}{4}=\dfrac{y}{5}\)

\(\Leftrightarrow\dfrac{2x}{8}=\dfrac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\cdot8\\y=5\cdot5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)

a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)

mà x+y=35

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=25\end{matrix}\right.\)

Vậy: (x,y)=(10;25)

b) Ta có: \(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)

nên \(\dfrac{x+2}{1}=\dfrac{y+10}{5}\)

hay \(\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)

mà y-3x=2 

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y-3x+10-6}{5-3}=\dfrac{2+4}{2}=3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{3x+6}{3}=3\\\dfrac{y+10}{5}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+6=9\\y+10=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

Vậy: (x,y)=(1;5)

c) Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}\)

nên \(\dfrac{2x}{8}=\dfrac{y}{5}\)

mà 2x-y=15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)

Vậy: (x,y)=(20;25)