Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3x ( y+1) + y + 1 = 7
(y+1)(3x +1) =7
th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)
th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)
th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)
Vậy (x,y)= (2 ;0); (0; 6)
b, xy - x + 3y - 3 = 5
(x( y-1) + 3( y-1) = 5
(y-1)(x+3) = 5
th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)
th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)
th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)
vậy (x, y) = ( 8; 2); ( -8; 0); (-2; 6); (-4; -4)
c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1
⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1 ⋮ 2x + 1
th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8
th2: 2x+ 1 = 1=> x =0; y = 7
th3: 2x+1 = -3 => x = x=-2 => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3
th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2
th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2
th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1
th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1
th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0
kết luận
(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)
3xy−2x+5y=293xy−2x+5y=29
9xy−6x+15y=879xy−6x+15y=87
(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77
3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77
(3y−2)(3x+5)=77(3y−2)(3x+5)=77
⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77
Ta có bảng giá trị sau:
Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}
a: =>-2x=90/91
hay x=-45/91
b: =>2x=-7
hay x=-7/2
c: ->-3x=-12
hay x=4
a) (2x-1)(y+4)=1
Vì (2x-1)(y+4)=1 => (2x-1) và (y+4) phải =1 hoặc là (2x-1) và (y+4) phải = -1
Ta có: TH1 (2x-1) và (y+4) = 1
* y+4=1 => y=1-4
=> y=(-3)
* 2x-1=1 => 2x=1+1
=> x=2:2
=> x=1
Vậy x=1; y=(-3)
Ta có TH2: (2x-1) và (y+4) = (-1)
* y+4=(-1) => y= (-1)-4
=> y= (-5)
* 2x-1=(-1) => 2x= (-1)+1
=> x=0:2
=> x=0
Vậy x=0; y=(-5)
x/3+1/y=1/6
=>2xy+6=y
=>y*(1-2x)=6
=>y=6/(1-2x)
Để y là số nguyên thì 1-2x phải là ước số của 6
=>1-2x có thể nhận các giá trị -6;-3;-2;-1;1;2;3;6
=>x nhận các giá trị tương ứng 3,5(loại) , 2 ; 1,5(loại) , 1 , 0 , -0,5 , -1 , -2,5
Vậy (x;y) có thể nhận các giá trị (-3;2) ;(-1;1);(1;0);(3:-1)
a) => 2xy +3x=y+1
=> 2xy+3x-y=1
=> x(2y+3) - 1/2 (2y+3) +3/2 =1
=> (x-1/2)(2y+3)=1-3/2= -1/2
=> (2x-1)(2y+3)=-1
ta có bảng
...........
\(a,3x\left(y+1\right)+\left(y+1\right)=7\\ =>\left(3x+1\right)\left(y+1\right)=7\)
\(+,TH1:\left\{{}\begin{matrix}3x+1=1\\y+1=7\end{matrix}\right.=>\left\{{}\begin{matrix}x=0\\y=6\end{matrix}\right.\\ +,TH2:\left\{{}\begin{matrix}3x+1=7\\y+1=1\end{matrix}\right.=>\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ +,TH3:\left\{{}\begin{matrix}3x+1=\left(-1\right)\\y+1=\left(-7\right)\end{matrix}\right.=>\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=-8\end{matrix}\right.\\ +,TH4:\left\{{}\begin{matrix}3x+1=-7\\y+1=-1\end{matrix}\right.=>\left\{{}\begin{matrix}x=-\dfrac{8}{3}\\y=-2\end{matrix}\right.\)