Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải bằng phương pháp đánh giá em nhé.
+ Nếu p = 2 ta có:
2 + 8 = 10 (loại)
+ Nếu p = 3 ta có:
3 + 8 = 11 (nhận)
4.3 + 1 = 13 (nhận)
+ Nếu p = 3\(k\) + 1 ta có:
p + 8 = 3\(k\) + 1 + 8 = 3\(k\) + 9 = 3(\(k+3\)) là hợp số (loại)
+ nếu p = 3\(k\) + 2 ta có:
4p + 1 = 4(3\(k\) + 2) + 1 = 12\(k\) + 9 = 3\(\left(4k+3\right)\) là hợp số loại
Vậy p = 3 là giá trị thỏa mãn đề bài
Kết luận: số nguyên tố p sao cho p + 8 và 4p + 1 đều là các số nguyên tố đó là 3
a, Để n + 4/n là số nguyên thì n + 4 chia hết cho n
=> 4 chia hết cho n
=> n thuộc {1; 2; 4}
Vậy...
b, Để n - 2/4 là số nguyên thì n - 2 chia hết cho 4
=> n - 2 = 4k (k thuộc N)
=> n = 4k + 2
Vậy n = 4k + 2 với n thuộc N
c, Để 6/n - 1 là số nguyên thì 6 chia hết cho n - 1
=> n - 1 thuộc {1; 2; 3; 6}
=> n thuộc {2; 3; 4; 7}
Vậy....
d, Để n/n - 2 là số nguyên thì n chia hết cho n - 2
=> n - 2 + 2 chia hết cho n - 2
=> 2 chia hết cho n - 2
=> n - 2 thuộc {1; 2}
=> n thuộc {3; 4}
Vậy...
a)
p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
b)
p=2=>6+p=6+2=8 là hợp số=>loại p = 2
p=3
=>6+p=6+3=9 là hợp số =? loại p=3
p=5
=>p+2=5+2=7
p+6=5+6=11
p+8=5+8=13
p+14=5+14=19
đều là snt => p =5 thỏa mãn
nếu p>5
=>p có dạng :
p=5k+1
=>p+14=5k+1+14=5k+15 =5k+5.3=5(k+3) chia hết cho 5 là hợp số => loại p=5k+1
p=5k+2
=>p+8=5k+2+8=5k+10=5k+2.5=5(k+2) chia hết cho 5 là hợp số => loại p=5k+2
Vậy p=5
Tổng 2 số là : 428 x 2 = 856
Ta có ; ab +7ab = 856
ab + 700 + ab = 856
2 x ab = 856 - 700
2 x ab = 156
ab = 156 : 2
ab = 78
Vậy 2 số ddos là 78 và 778
#chanh
N-11 là bội của N+2
-> \(N-11⋮N+2\)
\(\Rightarrow\left(N-11\right)-\left(N+2\right)⋮N+2\)
\(\Leftrightarrow-13⋮N+2\)
\(Ư\left(-13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow N\in\left\{-15;-3;-1;11\right\}\)(dự đoán ) .Nhưng do N là số nguyên tố
\(\Rightarrow N\in\left\{-3;11\right\}\)
p là số nguyên tố > 3 => p=3k+1 hoặc p=3k+2
- p=3k+1 =>p^2 =(3k+1)^2= 9 k2+1 Vậy p^2 chia 3 dư 1
- p=3k+2 => p^2=(3k+2)^2= 9 k2+4 Vậy p^2 chia 3 dư 1
có:VD:4 và 9 là hợp số
4=2( 2 nhỏ trên đầu )
9=3( 2 nhỏ trên đầu )
ƯCLN( 4;9)=1
vậy 4 và 9 là 2 số nguyên tố cùng nhau