K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2016

+ Với p = 2 thì p + 2 = 2 + 2 = 4, là hợp số, loại

+ Với p = 3 thì p + 2 = 3 + 2 = 5, p + 10 = 3 + 10 = 13, là số nguyên tố, chọn

+ Với p > 3, do p nguyên tố nên p không chia hết cho 3 => p = 3k + 1 hhoặc p = 3k + 2 (k thuộc N*)

Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3, chia hết cho 3

Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại

Nếu p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12, chia hết cho 3

Mà 1 < 3 < p + 10 => p + 10 là hợp số, loại

Vậy p = 3

20 tháng 6 2016

+ Với p = 2 thì p + 2 = 2 + 2 = 4, là hợp số, loại

+ Với p = 3 thì p + 2 = 3 + 2 = 5, p + 10 = 3 + 10 = 13, là số nguyên tố, chọn

+ Với p > 3, do p nguyên tố nên p không chia hết cho 3 => p = 3k + 1 hhoặc p = 3k + 2 (k thuộc N*)

Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3, chia hết cho 3

Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại

Nếu p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12, chia hết cho 3

Mà 1 < 3 < p + 10 => p + 10 là hợp số, loại

Vậy p = 3

7 tháng 11 2015

*Xét p=2=>p+8=10 là hợp số(loại)

*Xét p=3=>p+8=11

                   p+10=13(thoả mãn)

*Xét p>3=>p có 2 dạng 3k+1 và 3k+2

-Với p=3k+1=>p+8=3k+1+8=3k+9=3.(k+3) là hợp số(loại)

-Với p=3k+2=>p+10=3k+2+10=3k+12=3.(k+4) là hợp số(loại)

Vậy p=3 thoả mãn đề bài.

18 tháng 7 2018

1/ Xét \(p=2\) thì \(p+2=4\) ko phải số nguyên tố (loại)

\(p=3\) thì \(p+2=5;p+10=13\) là số nguyên tố (TM)

\(p=6k-1\left(k\in N;k\ne0\right)\) thì \(p+10=6k-1+10=6k+9\) chia hết cho 3( Loại)

\(p=6k+1\left(k\in N;k\ne0\right)\) thì \(p+2=6k+3\)chia hết cho 3( Loại)

Vậy \(p=3\)

2/ \(x\left(y-1\right)=5y-12\Leftrightarrow x\left(y-1\right)=5\left(y-1\right)-7\)

\(\Leftrightarrow\left(y-1\right)\left(x-5\right)=-7\) => PT ước số (giải được)

18 tháng 7 2018

bài 1 thiếu đề

5 tháng 3 2016

p=3

S={13;17}

17 tháng 3 2016

S={ 3 } hết rồi, vậy thôi

mình đầu tiên

22 tháng 3 2016

S={3} không nói đùa đau 

22 tháng 3 2016

S={3} không nói đùa đâu