Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
20abc < 30(ab + bc + ac) < 21abc <=> 2/3 < (ab + bc + ac) / abc < 7/10
<=> 2/3 < 1/a + 1/b + 1/c < 7/10
Gọi A là số nhỏ nhất, C là số lớn nhất trong 3 số nguyên tố a,b,c và B là số còn lại.Ta có
2/3 < 1/A + 1/B + 1/C < 7/10.Có các TH sau :
a) A = 2
..+B = 3 hoặc 5.Khi đó 1/A + 1/B +1/C > 7/10 (loại)
..+B = 7.Khi đó 1/A + 1/B = 1/2 + 1/7 = 9/14.Do đó 2/3 - 9/14 < 1/C < 7/10 - 9/14 hay 1/42 < 1/C < 2/35 => 17,5 < C < 42.Vì C là số nguyên tố nên C thuộc {19; 23; 29; 31; 37; 41}
..+B = 11.Khi đó 1/A + 1/B = 13/22.Do đó 2/3 - 13/22 < 1/C < 7/10 - 13/22 hay 5/66 < 1/C < 6/55 => 55/6 < C < 66/5.Vì C là số nguyên tố và A,B,C phân biệt nên C = 13
..+B >= 13.Khi đó 1/A + 1/B + 1/C <= 1/2 + 1/13 + 1/17 < 2/3 (loại)
b) A = 3
..+B = 5.Khi đó 1/A + 1/B = 8/15.Do đó 2/3 - 8/15 < 1/C < 7/10 - 8/15 hay 2/15 < 1/C < 1/6 => 6 < C < 15/2 => C =7
..+B >= 7.Khi đó 1/A + 1/B + 1/C <= 1/3 + 1/7 + 1/11 < 2/3 (loại)
c) A >= 5
...Khi đó 1/A + 1/B + 1/C <= 1/5 + 1/7 + 1/11 < 2/3 (loại)
Tóm lại có các TH sau
A = 2, B = 7, C = 19
A = 2, B = 7, C = 23
A = 2, B = 7, C = 29
A = 2, B = 7, C = 31
A = 2, B = 7, C = 37
A = 2, B = 7, C = 41
A = 2, B = 11, C = 13
A = 3, B = 5, C = 7
Ứng với mỗi TH lại có thể tìm được 6 bộ 3 số nguyên tố a,b,c khác nhau.Vd ứng với TH đầu tiên ta có
(a,b,c) = (2,7,19); (2,19,7); (7,2,19); (7,19,2); (19,2,7); (19,7,2)
Vậy có tất cả 48 bộ 3 số nguyên tố a,b,c thỏa mãn điều kiện đầu bài .
Mình làm cho bạn phần đầu này :Nguyen pham truong thinh
Ta có : 0 < a + b + c \(\le\)25 (vì số nguyên tố lớn nhất có 3 chữ số là 997)
=> 396 < abc - (a + b + c) \(\le\)396 + 25
=> 396 < abc - (a + b + c) \(\le\)421
=> 421 < abc \(\le\) 446
=> ab \(\in\left\{42;43;44\right\}\)
... tự giải tiếp nhé
a,b,c là số nguyên tố nên: a,b,c∈N∗và a,b,c≥2 Do đó,
ta có: c≥2^2+2^2>2 màc là số nguyên tố nên c phải là số lẻ:
Ta có: a^b+b^a+ba là số lẻ nên tồn tại a^b hoặc b^a chẵn mà a,b là số nguyên tố nên a=2 ∨ b=2 Xét 1 trường hợp, trường hợp còn lại
tương tự: b=2 và a phải là số lẻ nên a=2k+1 k∈N∗
Ta có: 2^a+a^2=c Nếu a=3 thì c=17 thỏa mãn. Nếu a>3 mà a là số nguyên tố nên a không chia hết cho 3 suy ra: a^2 chia 3 dư 1. Ta
có: 2^a=2^(k+1)=4^k.2−2+2=(4^k−1).2+2=BS(3)nên chia 3 dư 2 Từ đó, 2^a+a^2 ⋮3 nên c⋮3 suy ra c là hợp số, loại.
Vậy (a;b;c)=(2;3;17);(3;2;17)
HT
Lời giải:
Nếu $a,b,c$ là 3 số nguyên tố cùng lẻ thì $24=a+b+c$ lẻ (vô lý). Do đó tồn tại số nguyên tố chẵn, tức là $2$.
Không mất tính tổng quát giả sử $a\leq b\leq c$ thì $a$ chính là số nguyên tố chẵn, hay $a=2$
$b+c=22\geq 2b\Rightarrow b\leq 11$.
Ta có các cặp $(b,c)=(3,19), (5,17), (11,11)$
Vậy $(a,b,c)=(2,3,19), (2,5,17), (2,11,11)$ và các hoán vị của nó.