Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nghiem chung cua hai da thuc la 1
minh doan day, sai thi thoi
nghiệm của 4x+9
cho
4x+9=0
4x=-9
x=-9/4
vậy x=-9/4 là nghiệm của đa thứ 4x+9
nghiệm của -5x+6
cho
-5x+6=0
-5x=-6
x=-6:-5
x=6/5
vậy x=6/5 là nghiệm của đa thứ -5x+6
nghiệm của x2-1
cho
x2-1=0
x2=1
→x=1 hoặc x=-1
vậy x=1 hoặc x=-1 là nghiệm của đa thứ x2-1
nghiệm của x2-9
cho
x2-9=0
x2=9
→x=3 hoặc x=-3
vậy x=3 hoặc x=-3 là nghiệm của đa thứ x2-9
nghiệm của x2-x
cho
x2-x=0
→x2-1=0
→x=0
vậy x=0 là nghiệm của đa thức x2-x
` 4x + 9`
` 4x + 9=0`
` 4x = -9`
` x =-9/4`
Vậy.....
`-5x + 6 `
` -5x + 6=0`
` -5x = -6`
` x = 6/5`
Vậy....
` x^2 -1`
` x^2-1=0`
` ( x-1).(x+1)
\(=>\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy...
`x^2-9`
` x^2-9= 0`
` ( x + 3)(x-3) =0`
\(=>\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy,.....
` x^2-x`
` x^2-x = 0`
` ( x-1)x=0`
\(=>\left[{}\begin{matrix}x-1=0\\x=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
Vậy.....
`x^2-2x`
` x^2-2x = 0`
` ( x -2)x =0`
\(=>\left[{}\begin{matrix}x-2=0\\x=0\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
Vậy.....
a) \(A+B=2x^3+x^2-4x+x^3+3+6x+3x^3-2x+x^2-5\)
\(=6x^3+2x^2-2\)
b) \(A-B=\left(2x^3+x^2-4x+x^3+3\right)-\left(6x+3x^3-2x+x^2-5\right)\)
\(=-8x+8\)
c) Đặt \(f\left(x\right)=-8x+8\)
Ta có: \(f\left(x\right)=0\Leftrightarrow-8x+8=0\)
\(\Leftrightarrow-8x=-8\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)là nghiệm của đa thức f(x).
\(P\left(x\right)=5+x^3-2x+4x^3+3x^2-10=\left(x^3+4x^3\right)+3x^2+2x-\left(10-5\right)=5x^3+3x^2+2x-5\)
\(Q\left(x\right)=4-5x^3+2x^2-x^3+6x-11x^3-8x=-\left(5x^3+x^3+11x^3\right)+2x^2-\left(8x-6x\right)+4=-17x^3+2x^2-2x+4\)
\(P\left(x\right)-Q\left(x\right)=\left(5x^3+3x^2+2x-5\right)-\left(-17x^3+2x^2-2x+4\right)=5x^3+3x^2+2x-5+17x^3-2x^2+2x-4\)
\(=\left(5x^3+17x^3\right)+\left(3x^2-2x^2\right)+\left(2x+2x\right)-\left(5+4\right)=22x^3+x^2+4x-9\)
a: Đặt M(x)=0
=>(6-3x)(-2x+5)=0
=>x=2 hoặc x=5/2
b: Đặt N(x)=0
=>x(x+1)=0
=>x=0 hoặc x=-1
c: Đặt A(x)=0
=>3x-3=0
hay x=1
a,
*\(P\left(x\right)\) = \(-3x^2+4x-x^3+x^2+3x-1\)
\(P(x)=-3x^2+7x-x^3-1\)
\(P(x)=-x^3-3x^2+7x-1\)
* \(Q(x)=3x^4-x^2+x^3-2x-1-2x^3\)
\(Q(x)=3x^4-x^2-x^3-2x-1\)
\(Q(x)=3x^4-x^3-x^2-1\)
b, \(M(x)=P(x)-Q(x)\)
\(M(x)=-x^3-3x^2+7x-1-3x^4+x^3+x^2+1\)
\(M(x)=-2x^2+7x-3x^4\)