K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Không có đáp án đúng. Theo đáp án thì $m=0$ thì $\sin 2x=2m$ có 2 nghiệm pb thuộc $[0;\pi]$

Tức là $\sin 2x=0$ có 2 nghiệm pb $[0;\pi]$. Mà pt này có 3 nghiệm lận:

$x=0$

$x=\frac{1}{2}\pi$

$x=\pi$

 

6 tháng 9 2016

a) tan(2x - 15o ) = 1 <=> 2x = 15o + 45o + k180o

                                 <=> x = 30o + k90o ; k \(\in\)  Z

Do - 180o < x < 90o

      - 180o < 30o + k90o < 90o <=> - 2 < \(\frac{1}{3}\) + k < 1 <=> k \(\in\) { - 2 ; - 1 ; 0 }

Vậy các nghiệm của phương trình là z = - 150o ; x = -60o và x = 30o .

b) cos3x = \(-\frac{1}{\sqrt{3}}\) <=> x = \(-\frac{\pi}{9}+k\frac{\pi}{3};k\in Z\)

Do \(-\frac{\pi}{2}< x< 0\) , ta có

\(-\frac{\pi}{2}< -\frac{\pi}{9}+k\frac{\pi}{3}< 0\)\(-\frac{7}{6}< k< \frac{1}{3}\)\(k\in\left\{-1;0\right\}\)

Vậy các nghiệm của phương trình là \(x=-\frac{4\pi}{9}\) và \(x=-\frac{\pi}{9}\)

29 tháng 8 2019

3) 2sin^2 x - 3sinx + 1 = 0

Đặt t = sin x

(*) <=> 2t^2 - 3t + 1 = 0

<=> t = 1 (nhận) or t = 1/2 (nhận)

.Vs t = 1 => sinx = 1

<=> x = π/2 + k2π (k thuộc Z) (nhận)

.Vs t = 1/2 => sinx = 1/2

<=> sinx = sin π/6

<=> x = π/6 + k2π (k thuộc Z) (nhận)

Vậy ...

2) cos^2 x + cosx = 0

Đặt t = cosx

(*) <=> t^2 + t =0 <=> t = 0 (n) or t = -1 (n)

. Vs t = 0 => cosx = 0 <=> x = π/2 + kπ (loại)

.Vs t = -1 => cosx = -1 <=> x = π + k2π (nhận)

Vậy ...

1) (sin3x)/cosx + 1 = 0

ĐK: cosx + 1 ≠ 0 <=> cosx ≠ -1 <=> x ≠ π + k2π

<=> sin3x = 0

<=> 3x = kπ

<=> x = 1/3 kπ (k thuộc Z) (n)

Vậy ...