Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n^2-2 chia hết (n+3)
n(n+3)-3n-2 chia hết cho (n+3)
n(n+3)-3(n+3)+7 chia hết cho (n+3)
=> n+3 là ước của 7
n+3={-7,-1,1,7)
n={-10,-4,-2,4)
n^2-2 chia hết cho (n+3)
n(n+3 )-3n -2 chia hết (n +3)
n(n+3 )-3(n+3 )+7 chia het (n + 3)
suy ra n+3 là ước của 7
n+3 =(-7-1,1,7)
n= (-10,-4-2,4)
ủng hộ mikvoi
\(\Rightarrow\)2(n-7) - (2n+3) \(⋮\)2n+3
\(\Rightarrow\)(2n-14) - (2n+3) \(⋮\)2n+3
\(\Rightarrow\)2n - 14 - 2n - 3 \(⋮\)2n+3
\(\Rightarrow\)-17 \(⋮\)2n+3
\(\Rightarrow2n+3\inƯ\left(-17\right)=\left(1;-1;17;-17\right)\)
ta có bảng sau :
2n+3 1 -1 17 -17
n -1 -2 7 -10
mà \(n\in Z\)
\(\Rightarrow n\in\left(-1;-2;7;-10\right)\)
theo bài ra ta có:\
\(\left(n-7\right)⋮\left(2n+3\right)\)
=> (n - 7) - (2n+3) \(⋮2n+3\)
=> \(2\left(n-7\right)-\left(2n+3\right)⋮2n+3\)
=> \(2n-4-2n-3⋮2n+3\)
=> \(-7⋮2n+3\)
=> 2n+3 E Ư(-7) = { 1;-1;7;-7 }
ta có bảng sau:
2n+3 | 1 | -1 | 7 | -7 |
2n | -2 | -4 | 4 | -10 |
n | -1 | -2 | 2 | -5 |
vậy n ={ -1;-2;2;-5 }
n+5 chia hết cho 2n-1
=> 2(n+5) chia hết cho 2n-1
<=> 2n+10 chia hết cho 2n-1
<=> 2n-1+11 chia hết cho 2n-1
Mà 2n-1 chia hết cho 2n-1 . Suy ra 11 chia hết cho 2n-1
suy ra 2n-1 thuộc ước của 11. ta có bẳng sau;
2n-1 1 -1 11 -11
n 1 0 6 -5
vậy................
\(n^2+4⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Leftrightarrow\hept{\begin{cases}n^2+4⋮n-1\\n^2-n⋮n-1\end{cases}}\)
\(\Leftrightarrow n+4⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Leftrightarrow5⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(5\right)\)
\(\Leftrightarrow\orbr{\begin{cases}n-1=1\\n-1=5\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}n=0\\n=6\end{cases}}\)
n=--1 hoac 1 nhe
tớ bik mà