Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a ( a ∈ N* ; 99 < a < 1000 )
Theo bài ra , ta có :
\(\hept{\begin{cases}a-8⋮17\\a-16⋮25\end{cases}}\Rightarrow\hept{\begin{cases}\left(a-8\right)+17⋮17\\\left(a-16\right)+25⋮25\end{cases}}\Rightarrow\hept{\begin{cases}a+9⋮17\\a+9⋮25\end{cases}}\)
\(\Rightarrow a-9∈BC\left(17,25\right)\)
Vì 17 và 25 nguyên tố cùng nhau
=> BCNN( 17 . 25 ) = 17 . 25 = 425
=> BC( 17 , 25 ) = { 0 ; 425 ; 850 ; 1275 ; ... }
=> a + 9 ∈ { 0 ; 425 ; 850 ; 1275 ; ... }
=> a ∈ { 416 ; 841 ; 1266 ; ... } ( do a ∈ N* )
Mà 99 < a < 1000
=> a ∈ { 416 ; 841 }
Gọi số tự nhiên có ba chữ số cần tìm là \(n\)
Ta có:
\(n:17\left(R=8\right)\Rightarrow\left(n+9\right)⋮17\)
\(n:25\left(R=16\right)\Rightarrow\left(n+9\right)⋮25\)
\(\Rightarrow\left(n+9\right)⋮\left(17;25\right)\Leftrightarrow\left(n+9\right)=BCNN\left(17,25\right)\Leftrightarrow\left(n+9\right)=425\)
\(\Rightarrow n+9=425\)
\(\Rightarrow n=416\)
Gọi số tự nhiên cần tìm đó là x ; \(x\in N\)
Ta có : \(x-8⋮17\); \(x-16⋮25\)và \(100< x< 1000\)
\(\Rightarrow x+9⋮17\)và \(x+9⋮25\) \(\Rightarrow x+9\in BC\left(17,25\right)\)và \(100< x< 1000\)
\(BCNN\left(17,25\right)=425\)và \(BC\left(17,25\right)=\left\{0;425;850;....\right\}\)
Với \(x+9=425\Rightarrow x=425-9=416\)
Với \(x+9=850\Rightarrow x=850-9=841\)
\(\Rightarrow\)số tự nhiên có 3 chữ số cần tìm là 416 và 841
gọi số tự nhiên cần tìm là a ( a \(\in\)N* )
theo bài ra : a chia 17 dư 8
\(\Rightarrow\)a = 17k1 + 8 ( k1 \(\in\)N )
a chia 25 dư 16
\(\Rightarrow\)a = 25k2 + 16 ( k2 \(\in\)N )
\(\Rightarrow\)a + 9 \(⋮\)17 ; 25
\(\Rightarrow\)a + 9 \(\in\)BC ( 17 ; 25 )
BCNN ( 17 ; 25 ) = 425
\(\Rightarrow\)a + 9 = B ( 425 ) = { 0 ; 425 ; 850 ; ... }
Ta thấy 425 và 850 là hai số thỏa mãn bài ra
\(\Rightarrow\)a = { 416 ; 841 }
Vậy số tự nhiên cần tìm là 416 và 841
gọi a là số cần tìm
ta có
a= 17k + 8 suy ra a+9=17k+8+9=17k+17= 17 (k+1)
a= 25l + 16 suy ra a+9= 25l + 16+9= 25l+25 = 25(l+1)
từ đó suy ra a + 9 chia hết cho 17 hoặc 25
suy ra a+9 thuộc BC (17,25)
suy ra a +9 thuộc { 0, 425, 850 , 1275, ...}
vì a có 3 chữ số nên a+9 thuộc { 425,850}
vậy a thuộc {416, 841}
Gọi số cần tìm là x
Theo bài ra ta có
x chia 17 và 25 dư 8 và 16
=> x + 9 chia hết cho 17 và 25
=> x + 9 là BC(17;25)
BCNN(17;25) = 425
=> BC(17;25) = ( 0 ;425 ; 850 ; 1275 ; ...)
=> x +9 thuộc ( 0 ; 425 ; 850 ; 1275 ;.. .)
=> x thuộc ( -9 ; 416 ; 841 ; 1266; ... )
Vì x là số có ba chữ số => x = 416 ; 841
gọi a là số cần tìm
ta có
a= 17k + 8 suy ra a+9=17k+8+9=17k+17= 17 (k+1)
a= 25l + 16 suy ra a+9= 25l + 16+9= 25l+25 = 25(l+1)
từ đó suy ra a + 9 chia hết cho 17 hoặc 25
suy ra a+9 thuộc BC (17,25)
suy ra a +9 thuộc { 0, 425, 850 , 1275, ...}
vì a có 3 chữ số nên a+9 thuộc { 425,850}
vậy a thuộc {416, 841}
Bg
a) Ta có: p, p + 4 là số nguyên tố (p > 3, p \(\inℕ^∗\))
=> p có dạng 3k + 1 hoặc 3k + 2 (p không thể có dạng 3k vì p > 3)
Xét p có dạng 3k + 2:
=> p + 4 = 3k + 2 + 4 = 3k + 6 = 3k + 3.2 = 3.(k + 2) là hợp số (vô lý vì p + 4 là số nguyên tố)
Vậy p có dạng 3k + 1
=> p + 8 = 3k + 1 + 8 = 3k + 9 = 3k + 3.3 = 3.(k + 3) là hợp số
Vậy p + 8 là hợp số
b) Gọi số cần tìm là a (a \(\inℕ^∗\))
Theo đề bài: a chia 17 dư 8, a chia 25 dư 9, a có 3 chữ số và a nhỏ nhất
=> a - 8 \(⋮\)17 và a - 9 \(⋮\)25
=> a - 8 + 17 \(⋮\)17 và a - 9 + 25 \(⋮\)25
=> a + 9 \(⋮\)17; 25
=> a + 9 \(\in\)BC (17; 25)
Vì ƯCLN (17; 25) = 1
Nên BCNN (17; 25) = 17.25 = 425
=> BC (17; 25) = B (425) = {0; 425; 850;...}
Mà a là số có 3 chữ số và a nhỏ nhất
Nên a + 9 = 425
=> a = 416
Vậy số cần tìm là 416