K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2016

\(a\ge0\)

\(\frac{2}{2a-1}\sqrt{5a^2}\left(1-4a+4a^2\right)=\frac{2}{2a-1}\sqrt{5a^2}\left(1-2a\right)^2=\frac{2}{2a-1}\sqrt{5a^2}\left(2a-1\right)^2\)

    \(=2a\sqrt{5}\left(2a-1\right)\)

20 tháng 8 2017

xin lỗi,giờ mình mới học lớp 6 thôi

25 tháng 9 2021

1) \(ĐK:3-2a>0\Leftrightarrow a< \dfrac{3}{2}\)

2) \(ĐK:2x-5< 0\Leftrightarrow x< \dfrac{5}{2}\)

3) \(ĐK:3-5a< 0\Leftrightarrow a>\dfrac{3}{5}\)

4) \(ĐK:a< 0\)

5) \(ĐK:-a\ge0\Leftrightarrow a\le0\)

5 tháng 9 2019

\(A=\frac{-7x^2}{\sqrt{x-3}-2}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}\sqrt{x-3}-2\ne0\\x-3>0\end{cases}}\)

\(\sqrt{x-3}-2\ne0\Rightarrow\sqrt{x-3}\ne2\)

\(\Rightarrow x-3\ne4\Leftrightarrow x\ne7\)

\(x-3>0\Leftrightarrow x>3\)

Vậy điều kiện xác định của A là \(\hept{\begin{cases}x>3\\x\ne7\end{cases}}\)

5 tháng 9 2019

ĐKXĐ:

\(\sqrt{x-3}\ge0\Rightarrow\sqrt{x-3}-2\ge-2\)

\(\Rightarrow x\ge3\) 

Mà \(\sqrt{x-3}-2\ne0\) \(\Rightarrow x\ne7\)

Vậy \(x\ge3\) và \(x\ne7\)

29 tháng 6 2016

\(=\frac{2-1}{\sqrt{2}+1}+\frac{3-2}{\sqrt{3}+\sqrt{2}}+\frac{4-3}{\sqrt{4}+\sqrt{3}}+...+\frac{100-99}{\sqrt{100}+\sqrt{99}}.\)

\(=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\sqrt{2}+1}+\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}+\frac{\left(\sqrt{4}+\sqrt{3}\right)\left(\sqrt{4}-\sqrt{3}\right)}{\sqrt{4}+\sqrt{3}}+...\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)

\(=\sqrt{100}-1=10-1=9.\)