Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4+(1−2m)x2+m2−1(1)
Đặt t=x2(t\(\ge\) 0) ta được:
t2+(1-2m)t+m2-1(2)
a)Để PT vô nghiệm thì:
\(\Delta=\left(1-2m\right)^2-4.1.\left(m^2-1\right)<0\)
<=>1-4m+4m2-4m2+4<0
<=>5-4m<0
<=>m>5/4
Chọn B.
Phương pháp:
Bảng biến thiên:
Phương trình đã cho có 3 nghiệm ⇔ phương trình ẩn t có hai nghiệm phân biệt trong đó có một nghiệm bằng 0 và một nghiệm dương ⇔ đường thẳng y = 2-m cắt đồ thị hàm số tại một điểm có hoành độ bằng 0 và điểm còn lại có hoành độ dương.
Đáp án D.
Đặt t = cos 3 x , ( - 1 ≤ t ≤ 1 ) Phương trình trở thành 2 t 2 + ( 3 - 2 m ) t + m - 2 = 0
Ta có ∆ = 2 m - 5 2 Suy ra phương trình có hai nghiệm t 1 = 1 2 t 2 = m - 2
Trường hợp 1:
Với t 1 = 1 2 → cos 3 x = 1 2 ⇔ 3 x = π 3 + k 2 π 3 x = - π 3 + k 2 π ⇔ x = π 9 + k 2 π 3 x = - π 9 + k 2 π 3
* Với x = π 9 + k 2 π 3 và x ∈ - π 6 ; π 3 thì - π 6 < - π 9 + k 2 π 3 < π 3 ⇔ 1 12 < k < 2 3
Do k ∈ ℤ nên k = 0 → x = - π 9
* Với x = - π 9 + k 2 π 3 và x ∈ - π 6 ; π 3 thì - π 6 < - π 9 + k 2 π 3 < π 3 ⇔ - 1 12 < k < 2 3
Do k ∈ ℤ nên k = 0 → x = - π 9
Suy ra phương trình đã cho luôn có hai nghiệm trên khoảng - π 6 ; π 3
Trường hợp 2: Với t 2 = m - 2 → cos 3 x = m - 2 Xét f ( x ) = cos 3 x trên - π 6 ; π 3
Đạo hàm f ' ( x ) = - 3 sin 3 x ; f ' ( x ) = 0 ⇔ x = 0 ∈ - π 6 ; π 3
Bảng biến thiên:
Để phương trình đã cho có 3 nghiệm trên
-
π
6
;
π
3
khi và chỉ khi phương trình
cos
3
x
=
m
-
2
có 1 nghiệm trên
-
π
6
;
π
3
, hay đồ thị
f
(
x
)
=
cos
3
x
cắt đường thẳng
y
=
m
-
2
tại đúng 1 điểm. Quan sát bảng biến thiên, suy ra
-
1
≤
m
-
2
<
0
⇔
1
≤
m
<
2
Đáp án là A.
Với t = 1 ⇒ PT (1) có 1 nghiệm x=0.
Với mỗi nghiệm t>1 sẽ sinh ra 2 nghiệm phân biệt khác 0 của phương trình (1).
Để pt (1) có đúng 3 nghiệm m=3.