Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, hệ\(\Leftrightarrow\)$\left \{ {{x>\frac{1}{2} } \atop {x<m+2}} \right.$
để hệ có nghiệm ⇒ m+2< $\frac{1}{2}$ ⇒ m<$\frac{-3}{2}$
Câu 1:
\(\Leftrightarrow\left\{{}\begin{matrix}13x>\dfrac{7}{3}\\4x-16< 3x-14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{39}\\x< 2\end{matrix}\right.\Leftrightarrow\dfrac{7}{39}< x< 2\)
mà x nguyên
nên x=1
Câu 2:
\(\Leftrightarrow\left\{{}\begin{matrix}2x< 4\\mx>2-m\end{matrix}\right.\)
=>x<2 và mx>2-m
Nếu m=0 thì bất phươg trình vô nghiệm
Nếu m<>0 thì BPT sẽ tương đương với:
\(\left\{{}\begin{matrix}x< 2\\x>\dfrac{2-m}{m}\end{matrix}\right.\)
Để BPT vô nghiệm thì 2-m/m>=2
=>\(\dfrac{2-m}{m}-2>=0\)
=>\(\dfrac{2-m-2m}{m}>=0\)
=>\(\dfrac{3m-2}{m}< =0\)
=>0<m<=2/3
1.
\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)
Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:
\(t^2-3m.t+m=0\) (1)
Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:
TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)
\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)
\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)
TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)
\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)
\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)
Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)
2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)
Ko tồn tại m thỏa mãn
Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-3\right)x< m\\\left(m-4\right)x< 2m-7\end{matrix}\right.\)
- Với \(m=3\) ktm, \(3< m< 4\Rightarrow\left\{{}\begin{matrix}x>\dfrac{m}{m-3}\\x< \dfrac{2m-7}{m-4}\end{matrix}\right.\) thỏa mãn
- Với \(m< 3\Rightarrow\left\{{}\begin{matrix}x>\dfrac{m}{m-3}\\x>\dfrac{2m-7}{m-4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m}{m-3}< \dfrac{1}{2}\\\dfrac{2m-7}{m-4}< \dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-3< m< 3\\\dfrac{10}{3}< m< 4\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
- Với \(m>4\Rightarrow\left\{{}\begin{matrix}x< \dfrac{m}{m-3}\\x< \dfrac{2m-7}{m-4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m}{m-3}>0\\\dfrac{2m-7}{m-4}>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>3\\m< 0\end{matrix}\right.\\\left\{{}\begin{matrix}m>4\\m< \dfrac{7}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>4\)
- Với \(3< m< 4\Rightarrow\left\{{}\begin{matrix}x< \dfrac{m}{m-3}\\x>\dfrac{2m-7}{m-4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m}{m-3}>0\\\dfrac{2m-7}{m-4}< \dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>3\end{matrix}\right.\\\dfrac{10}{3}< m< 4\end{matrix}\right.\) \(\Rightarrow\dfrac{10}{3}< m< 4\)
Vậy \(m>\dfrac{10}{3}\)
Đã test lại với 1 giá trị m nằm giữa \(\dfrac{10}{3}\) và \(\dfrac{7}{2}\) vẫn thỏa mãn, key của em có vẻ không đúng,